1.开篇介绍
2.时间空间复杂度
3.动态规划
4.贪心
5.二分查找
6.深度优先&广度优先
7.双指针
8.滑动窗口
9.位运算
10.递归&分治
11剪枝&回溯
12.堆
13.单调栈
14.排序算法
15.链表
16.set&map
17.栈
18.队列
19.数组
20.字符串
21.树
22.字典树
23.并查集
24.其他类型题
动态规划,英文:Dynamic Programming
,简称DP
,将问题分解为互相重叠的子问题,通过反复求解子问题来解决原问题就是动态规划,如果某一问题有很多重叠子问题,使用动态规划来解是比较有效的。
求解动态规划的核心问题是穷举,但是这类问题穷举有点特别,因为这类问题存在「重叠子问题」,如果暴力穷举的话效率会极其低下。动态规划问题一定会具备「最优子结构」,才能通过子问题的最值得到原问题的最值。另外,虽然动态规划的核心思想就是穷举求最值,但是问题可以千变万化,穷举所有可行解其实并不是一件容易的事,只有列出**正确的「状态转移方程」**才能正确地穷举。重叠子问题、最优子结构、状态转移方程就是动态规划三要素
动画过大,点击查看
//暴力递归复杂度O(2^n)
var fib = function (N) {
if (N == 0) return 0;
if (N == 1) return 1;
return fib(N - 1) + fib(N - 2);
};
var fib = function (n) {
const memo = {}; // 对已算出的结果进行缓存
const helper = (x) => {
if (memo[x]) return memo[x];
if (x == 0) return 0;
if (x == 1) return 1;
memo[x] = fib(x - 1) + fib(x - 2);
return memo[x];
};
return helper(n);
};
const fib = (n) => {
if (n <= 1) return n;
const dp = [0, 1];
for (let i = 2; i <= n; i++) {
//自底向上计算每个状态
dp[i] = dp[i - 1] + dp[i - 2];
}
return dp[n];
};
const fib = (n) => {
if (n <= 1) return n;
//滚动数组 dp[i]只和dp[i-1]、dp[i-2]相关,只维护长度为2的滚动数组,不断替换数组元素
const dp = [0, 1];
let sum = null;
for (let i = 2; i <= n; i++) {
sum = dp[0] + dp[1];
dp[0] = dp[1];
dp[1] = sum;
}
return sum;
};
var fib = function (N) {
if (N <= 1) {
return N;
}
let prev2 = 0;
let prev1 = 1;
let result = 0;
for (let i = 2; i <= N; i++) {
result = prev1 + prev2; //直接用两个变量就行
prev2 = prev1;
prev1 = result;
}
return result;
};
O(n)
,空间复杂度O(1)
Js:
var fib = function (N) {
if (N <= 1) {
return N;
}
let prev2 = 0;
let prev1 = 1;
let result = 0;
for (let i = 2; i <= N; i++) {
result = prev1 + prev2;
prev2 = prev1;
prev1 = result;
}
return result;
};
Java:
class Solution {
public int fib(int n) {
if (n <= 1) {
return n;
}
int prev2 = 0, prev1 = 1, result = 0;
for (int i = 2; i <= n; i++) {
result = prev2 + prev1;
prev2 = prev1;
prev1 = result;
}
return result;
}
}
动画过大,点击查看
f[i][j] = f[i - 1][j] + f[i][j - 1]
;O(mn)
。空间复杂度O(mn)
,优化后O(n)
js:
var uniquePaths = function (m, n) {
const f = new Array(m).fill(0).map(() => new Array(n).fill(0)); //初始dp数组
for (let i = 0; i < m; i++) {
//初始化列
f[i][0] = 1;
}
for (let j = 0; j < n; j++) {
//初始化行
f[0][j] = 1;
}
for (let i = 1; i < m; i++) {
for (let j = 1; j < n; j++) {
f[i][j] = f[i - 1][j] + f[i][j - 1];
}
}
return f[m - 1][n - 1];
};
//状态压缩
var uniquePaths = function (m, n) {
let cur = new Array(n).fill(1);
for (let i = 1; i < m; i++) {
for (let r = 1; r < n; r++) {
cur[r] = cur[r - 1] + cur[r];
}
}
return cur[n - 1];
};
Java:
class Solution {
public int uniquePaths(int m, int n) {
int[][] f = new int[m][n];
for (int i = 0; i < m; ++i) {
f[i][0] = 1;
}
for (int j = 0; j < n; ++j) {
f[0][j] = 1;
}
for (int i = 1; i < m; ++i) {
for (int j = 1; j < n; ++j) {
f[i][j] = f[i - 1][j] + f[i][j - 1];
}
}
return f[m - 1][n - 1];
}
}
//状态压缩
class Solution {
public int uniquePaths(int m, int n) {
int[] cur = new int[n];
Arrays.fill(cur,1);
for (int i = 1; i < m;i++){
for (int j = 1; j < n; j++){
cur[j] += cur[j-1] ;
}
}
return cur[n-1];
}
}
O(mn)
,空间复杂度O(mn)
,状态压缩之后是o(n)Js:
var uniquePathsWithObstacles = function (obstacleGrid) {
const m = obstacleGrid.length;
const n = obstacleGrid[0].length;
const dp = Array(m)
.fill()
.map((item) => Array(n).fill(0)); //初始dp数组
for (let i = 0; i < m && obstacleGrid[i][0] === 0; ++i) {
//初始列
dp[i][0] = 1;
}
for (let i = 0; i < n && obstacleGrid[0][i] === 0; ++i) {
//初始行
dp[0][i] = 1;
}
for (let i = 1; i < m; ++i) {
for (let j = 1; j < n; ++j) {
//遇到障碍直接返回0
dp[i][j] = obstacleGrid[i][j] === 1 ? 0 : dp[i - 1][j] + dp[i][j - 1];
}
}
return dp[m - 1][n - 1];
};
//状态压缩
var uniquePathsWithObstacles = function (obstacleGrid) {
let m = obstacleGrid.length;
let n = obstacleGrid[0].length;
let dp = Array(n).fill(0); //用0填充,因为现在有障碍物,当前dp数组元素的值还和obstacleGrid[i][j]有关
dp[0] = 1; //第一列 暂时用1填充
for (let i = 0; i < m; i++) {
for (let j = 0; j < n; j++) {
if (obstacleGrid[i][j] == 1) {
//注意条件,遇到障碍物dp[j]就变成0,这里包含了第一列的情况
dp[j] = 0;
} else if (j > 0) {
//只有当j>0 不是第一列了才能取到j - 1
dp[j] += dp[j - 1];
}
}
}
return dp[n - 1];
};
Java:
class Solution {
public int uniquePathsWithObstacles(int[][] obstacleGrid) {
int n = obstacleGrid.length, m = obstacleGrid[0].length;
int[] dp = new int[m];
dp[0] = obstacleGrid[0][0] == 0 ? 1 : 0;
for (int i = 0; i < n; ++i) {
for (int j = 0; j < m; ++j) {
if (obstacleGrid[i][j] == 1) {
dp[j] = 0;
continue;
}
if (j - 1 >= 0 && obstacleGrid[i][j - 1] == 0) {
dp[j] += dp[j - 1];
}
}
}
return dp[m - 1];
}
}
O(n)
,空间复杂度O(1)
Js:
var climbStairs = function (n) {
const memo = [];
memo[1] = 1;
memo[2] = 2;
for (let i = 3; i <= n; i++) {
memo[i] = memo[i - 2] + memo[i - 1];//所以到第n阶台阶可以从第n-2或n-1上来
}
return memo[n];
};
//状态压缩
var climbStairs = (n) => {
let prev = 1;
let cur = 1;
for (let i = 2; i < n + 1; i++) {
[prev, cur] = [cur, prev + cur]
// const temp = cur; // 暂存上一次的cur
// cur = prev + cur; // 当前的cur = 上上次cur + 上一次cur
// prev = temp; // prev 更新为 上一次的cur
}
return cur;
}
Java:
class Solution {
public int climbStairs(int n) {
int prev = 1, cur = 1;
for (int i = 2; i < n + 1; i++) {
int temp = cur;
cur = prev + cur;
prev = temp;
}
return cur;
}
}
思路:dp[i]
表示i
的完全平方和的最少数量,dp[i - j * j] + 1
表示减去一个完全平方数j
的完全平方之后的数量加1就等于dp[i]
,只要在dp[i]
, dp[i - j * j] + 1
中寻找一个较少的就是最后dp[i]
的值。
O(n* sqrt(n))
,n是输入的整数,需要循环n次,每次计算dp方程的复杂度sqrt(n)
,空间复杂度O(n)js:
var numSquares = function (n) {
const dp = [...Array(n)].map((_) => 0); //初始化dp数组 当n为0的时候
for (let i = 1; i <= n; i++) {
dp[i] = i; // 最坏的情况就是每次+1 比如: dp[3]=1+1+1
for (let j = 1; i - j * j >= 0; j++) {//枚举前一个状态
dp[i] = Math.min(dp[i], dp[i - j * j] + 1); // 动态转移方程
}
}
return dp[n];
};
java:
class Solution {
public int numSquares(int n) {
int[] dp = new int[n];
for (int i = 1; i <= n; i++) {
dp[i] = i;
for (int j = 1; i - j * j >= 0; j++) {
dp[i] = Math.min(dp[i], dp[i - j * j] + 1);
}
}
return dp[n];
}
}
O(n^2)
,空间复杂O(n)
Js:
const minimumTotal = (triangle) => {
const h = triangle.length;
// 初始化dp数组
const dp = new Array(h);
for (let i = 0; i < h; i++) {
dp[i] = new Array(triangle[i].length);
}
for (let i = h - 1; i >= 0; i--) { //自底而上遍历
for (let j = 0; j < triangle[i].length; j++) { //同一层的
if (i == h - 1) { // base case 最底层
dp[i][j] = triangle[i][j];
} else { // 状态转移方程,上一层由它下面一层计算出
dp[i][j] = Math.min(dp[i + 1][j], dp[i + 1][j + 1]) + triangle[i][j];
}
}
}
return dp[0][0];
};
//状态压缩
const minimumTotal = (triangle) => {
const bottom = triangle[triangle.length - 1];
const dp = new Array(bottom.length);
// base case 是最后一行
for (let i = 0; i < dp.length; i++) {
dp[i] = bottom[i];
}
// 从倒数第二列开始迭代
for (let i = dp.length - 2; i >= 0; i--) {
for (let j = 0; j < triangle[i].length; j++) {
dp[j] = Math.min(dp[j], dp[j + 1]) + triangle[i][j];
}
}
return dp[0];
};
Java:
class Solution {
public int minimumTotal(List<List<Integer>> triangle) {
int n = triangle.size();
int [] dp = new int [n];
for(int i = 0 ; i < n ; i++){
dp[i] = triangle.get(n-1).get(i);
}
for(int i = n-2 ; i >= 0 ; i--){
for(int j = 0 ; j <= i ; j++){
dp[j] = triangle.get(i).get(j) + Math.min(dp[j] , dp[j+1]);//迭代
}
}
return dp[0];
}
}
思路:
状态定义:dp[i][0]
表示从第 0 项到第 i 项范围内的子数组的最小乘积,dp[i][1]
表示从第 0 项到第 i 项范围内的子数组的最大乘积
初始状态:dp[0][0]=nums[0], dp[0][1]=nums[0]
分情况讨论:
nums[i]
自己num[i]
是负数,希望乘上前面的最大积num[i]
是正数,希望乘上前面的最小积状态转移方程:
状态压缩:dp[i][x]
只与dp[i][x]-1
,所以只需定义两个变量,prevMin = nums[0]
,prevMax = nums[0]
状态压缩之后的方程:
复杂度:时间复杂度O(n)
,空间复杂度O(1)
js:
var maxProduct = (nums) => {
let res = nums[0]
let prevMin = nums[0]
let prevMax = nums[0]
let temp1 = 0, temp2 = 0
for (let i = 1; i < nums.length; i++) {
temp1 = prevMin * nums[i]
temp2 = prevMax * nums[i]
prevMin = Math.min(temp1, temp2, nums[i])
prevMax = Math.max(temp1, temp2, nums[i])
res = Math.max(prevMax, res)
}
return res
}
Java:
class Solution {
public int maxProduct(int[] nums) {
int res = nums[0], prevMin = nums[0], prevMax = nums[0];
int temp1 = 0, temp2 = 0;
for (int i = 1; i < nums.length; i++) {
temp1 = prevMin * nums[i];
temp2 = prevMax * nums[i];
prevMin = Math.min(Math.min(temp1, temp2), nums[i]);
prevMax = Math.max(Math.max(temp1, temp2), nums[i]);
res = Math.max(prevMax, res);
}
return res;
}
}
第5,6道题相当于在第2道题的基础上加了冷冻期和手续费的条件。
k >= 0
才能进行交易,否则没有交易次数i
: 天数k
: 交易次数,每次交易包含买入和卖出,这里我们只在买入的时候需要将 k - 1
0
: 不持有股票1
: 持有股票dp[i][k][0]//第i天 还可以交易k次 手中没有股票
dp[i][k][1]//第i天 还可以交易k次 手中有股票
最终的最大收益是dp[n - 1][k][0]
而不是dp[n - 1][k][1]
,因为最后一天卖出肯定比持有收益更高
// 今天没有持有股票,分为两种情况
// 1. dp[i - 1][k][0],昨天没有持有,今天不操作。
// 2. dp[i - 1][k][1] + prices[i] 昨天持有,今天卖出,今天手中就没有股票了。
dp[i][k][0] = Math.max(dp[i - 1][k][0], dp[i - 1][k][1] + prices[i])
// 今天持有股票,分为两种情况:
// 1.dp[i - 1][k][1] 昨天持有,今天不操作
// 2.dp[i - 1][k - 1][0] - prices[i] 昨天没有持有,今天买入。
dp[i][k][1] = Math.max(dp[i - 1][k][1], dp[i - 1][k - 1][0] - prices[i])
//最大利润就是这俩种情况的最大值
状态转移方程
//第i天不持有 由 第i-1天不持有然后不操作 和 第i-1天持有然后卖出 两种情况的最大值转移过来
dp[i][1][0] = Math.max(dp[i - 1][1][0], dp[i - 1][1][1] + prices[i])
//第i天持有 由 第i-1天持有然后不操作 和 第i-1天不持有然后买入 两种情况的最大值转移过来
dp[i][1][1] = Math.max(dp[i - 1][1][1], dp[i - 1][0][0] - prices[i])
= Math.max(dp[i - 1][1][1], -prices[i]) // k=0时 没有交易次数,dp[i - 1][0][0] = 0
k
是固定值1,不影响结果,所以可以不用管,简化之后如下
dp[i][0] = Math.max(dp[i - 1][0], dp[i - 1][1] + prices[i])
dp[i][1] = Math.max(dp[i - 1][1], -prices[i])
完整代码
//时间复杂度O(n) 空间复杂度O(n),dp数组第二维是常数
const maxProfit = function (prices) {
let n = prices.length;
let dp = Array.from(new Array(n), () => new Array(2));
dp[0][0] = 0; //第0天不持有
dp[0][1] = -prices[0]; //第0天持有
for (let i = 1; i < n; i++) {
dp[i][0] = Math.max(dp[i - 1][0], dp[i - 1][1] + prices[i]);
dp[i][1] = Math.max(dp[i - 1][1], -prices[i]);
}
return dp[n - 1][0];
};
状态压缩,dp[i]
只和 dp[i - 1]
有关,去掉一维
//时间复杂度O(n) 空间复杂度O(1)
const maxProfit = function (prices) {
let n = prices.length;
let dp = Array.from(new Array(n), () => new Array(2));
dp[0] = 0;
dp[1] = -prices[0];
for (let i = 1; i < n; i++) {
dp[0] = Math.max(dp[0], dp[1] + prices[i]);
dp[1] = Math.max(dp[1], -prices[i]);
}
return dp[0];
};
//语意化
const maxProfit = function (prices) {
let n = prices.length;
let sell = 0;
let buy = -prices[0];
for (let i = 1; i < n; i++) {
sell = Math.max(sell, buy + prices[i]);
buy = Math.max(buy, -prices[i]);
}
return sell;
};
状态转移方程
//第i天不持有 由 第i-1天不持有然后不操作 和 第i-1天持有然后卖出 两种情况的最大值转移过来
dp[i][k][0] = Math.max(dp[i - 1][k][0], dp[i - 1][k][1] + prices[i])
//第i天持有 由 第i-1天持有然后不操作 和 第i-1天不持有然后买入 两种情况的最大值转移过来
dp[i][k][1] = Math.max(dp[i - 1][k][1], dp[i - 1][k - 1][0] - prices[i])
k同样不影响结果,简化之后如下
dp[i][0] = Math.max(dp[i - 1][0], dp[i - 1][1] + prices[i])
dp[i][1] = Math.max(dp[i - 1][1], dp[i - 1][0] - prices[i])
完整代码
const maxProfit = function (prices) {
let n = prices.length;
let dp = Array.from(new Array(n), () => new Array(2));
dp[0][0] = 0; //第0天不持有
dp[0][1] = -prices[0]; //第0天买入 花了prices[0]
for (let i = 1; i < n; i++) {
dp[i][0] = Math.max(dp[i - 1][0], dp[i - 1][1] + prices[i]);
dp[i][1] = Math.max(dp[i - 1][1], dp[i - 1][0] - prices[i]);
}
return dp[n - 1][0];
};
状态压缩,同样dp[i]
只和 dp[i - 1] 有关,去掉一维
const maxProfit = function (prices) {
let n = prices.length;
let dp = Array.from(new Array(n), () => new Array(2));
dp[0] = 0;
dp[1] = -prices[0];
for (let i = 1; i < n; i++) {
dp[0] = Math.max(dp[0], dp[1] + prices[i]);
dp[1] = Math.max(dp[1], dp[0] - prices[i]);
}
return dp[0];
};
//语意化
const maxProfit = function (prices) {
let n = prices.length;
let sell = 0;
let buy = -prices[0];
for (let i = 1; i < n; i++) {
sell = Math.max(sell, buy + prices[i]);
buy = Math.max(buy, sell - prices[i]);
}
return sell;
};
状态转移方程
dp[i][k][0] = Math.max(dp[i - 1][k][0], dp[i - 1][k][1] + prices[i])
dp[i][k][1] = Math.max(dp[i - 1][k][1], dp[i - 1][k - 1][0] - prices[i])
k对结果有影响 不能舍去,只能对k进行循环
for (let i = 0; i < n; i++) {
for (let k = maxK; k >= 1; k--) {
dp[i][k][0] = Math.max(dp[i - 1][k][0], dp[i - 1][k][1] + prices[i]);
dp[i][k][1] = Math.max(dp[i - 1][k][1], dp[i - 1][k - 1][0] - prices[i]);
}
}
//k=2,直接写出循环的结果
dp[i][2][0] = Math.max(dp[i - 1][2][0], dp[i - 1][2][1] + prices[i])
dp[i][2][1] = Math.max(dp[i - 1][2][1], dp[i - 1][1][0] - prices[i])
dp[i][1][0] = Math.max(dp[i - 1][1][0], dp[i - 1][1][1] + prices[i])
dp[i][1][1] = Math.max(dp[i - 1][1][1], dp[i - 1][0][0] - prices[i])
= Math.max(dp[i - 1][1][1], -prices[i])// k=0时 没有交易次数,dp[i - 1][0][0] = 0
//去掉i这一维度
dp[2][0] = Math.max(dp[2][0], dp[2][1] + prices[i])
dp[2][1] = Math.max(dp[2][1], dp[1][0] - prices[i])
dp[1][0] = Math.max(dp[1][0], dp[1][1] + prices[i])
dp[1][1] = Math.max(dp[1][1], dp[0][0] - prices[i])
= Math.max(dp[1][1], -prices[i])// k=0时 没有交易次数,dp[i - 1][0][0] = 0
完整代码
//和前面一样 我们直接降维
const maxProfit = function (prices) {
let buy_1 = -prices[0], sell_1 = 0
let buy_2 = -prices[0], sell_2 = 0
let n = prices.length
for (let i = 1; i < n; i++) {
sell_2 = Math.max(sell_2, buy_2 + prices[i])
buy_2 = Math.max(buy_2, sell_1 - prices[i])
sell_1 = Math.max(sell_1, buy_1 + prices[i])
buy_1 = Math.max(buy_1, -prices[i])
}
return sell_2
}
const maxProfit = function (k, prices) {
let n = prices.length;
let profit = new Array(k);//和123题一样 求出所有k的状态
// 初始化k次交易买入卖出的利润
for (let j = 0; j <= k; j++) {
profit[j] = {
buy: -prices[0],//表示有股票
sell: 0,//表示没有股票
};
}
for (let i = 0; i < n; i++) {
for (let j = 1; j <= k; j++) {
//122题可以交易无数次,188交易k次,所以直接在加一层k循环就可以
//122最后的递推方程:
//sell = Math.max(sell, buy + prices[i]);
//buy = Math.max(buy, -prices[i]);
profit[j] = {
sell: Math.max(profit[j].sell, profit[j].buy + prices[i]),
buy: Math.max(profit[j].buy, profit[j - 1].sell - prices[i]),
};
}
}
return profit[k].sell; //返回第k次清空手中的股票之后的最大利润
};
状态转移方程
dp[i][k][0] = Math.max(dp[i - 1][k][0], dp[i - 1][k][1] + prices[i])
//冷却时间1天,所以要从 i - 2 天转移状态
//买入,卖出 ---- 冷冻期 ---- 买入,卖出
dp[i][k][1] = Math.max(dp[i - 1][k][1], dp[i - 2][k - 1][0] - prices[i])
题目不限制k的大小,可以舍去
dp[i][0] = Math.max(dp[i - 1][0], dp[i - 1][1] + prices[i])
dp[i][1] = Math.max(dp[i - 1][1], dp[i - 2][0] - prices[i])
//降维i
dp[0] = Math.max(dp[0], dp[1] + prices[i])
dp[1] = Math.max(dp[1], profit_freeze - prices[i])
完整代码
const maxProfit = function (prices) {
let n = prices.length;
let buy = -prices[0];//手中有股票
let sell = 0;//没有股票
let profit_freeze = 0;
for (let i = 1; i < n; i++) {
let temp = sell;
sell = Math.max(sell, buy + prices[i]);
buy = Math.max(buy, profit_freeze - prices[i]);
profit_freeze = temp;
}
return sell;
};
状态转移方程
//每次交易要支付手续费 我们定义在卖出的时候扣手续费
dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] + prices[i] - fee)
dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] - prices[i])
完整代码
const maxProfit = function (prices, fee) {
let sell = 0;//卖出
let buy = -prices[0];//买入
for (let i = 1; i < prices.length; i++) {
sell = Math.max(sell, buy + prices[i] - fee);
buy = Math.max(buy, sell - prices[i]);
}
return sell;
};
不能用贪心做,反例,coins=[1, 3, 5, 6, 7]
,amount=30
,用贪心先用最大的面额7,在用2个1,4 * 7 + 2 * 1 = 30
,但是我们用5个6,5 * 6 = 30
就能用最少的硬币兑换完成
方法1.动态规划
dp[i]
表示兑换面额i
所需要的最少硬币,因为硬币无限,所以可以自底向上计算dp[i]
,对于dp[0~i]
的每个状态,循环coins
数组,寻找可以兑换的组合,用i
面额减去当前硬币价值,dp[i-coin]
在加上一个硬币数就是dp[i]
,最后取最小值就是答案,状态转移方程就是dp[i] = Math.min(dp[i], dp[i - coin] + 1)
;O(s)
,也就是dp数组的长度Js:
var coinChange = function (coins, amount) {
let dp = new Array(amount + 1).fill(Infinity);//初始化dp数组
dp[0] = 0;//面额0只需要0个硬币兑换
for (let i = 1; i <= amount; i++) {//循环面额
for (let coin of coins) {//循环硬币数组
if (i - coin >= 0) {//当面额大于硬币价值时
//dp[i - coin]: 当前面额i减当前硬币价值所需要的最少硬币
//dp[i] 可由 dp[i - coin] + 1 转换而来
dp[i] = Math.min(dp[i], dp[i - coin] + 1);
}
}
}
return dp[amount] === Infinity ? -1 : dp[amount];//如果dp[amount] === Infinity,则无法兑换
};
Java:
public class Solution {
public int coinChange(int[] coins, int amount) {
int max = amount + 1;
int[] dp = new int[amount + 1];
Arrays.fill(dp, max);
dp[0] = 0;
for (int i = 1; i <= amount; i++) {
for (int j = 0; j < coins.length; j++) {
if (coins[j] <= i) {
dp[i] = Math.min(dp[i], dp[i - coins[j]] + 1);
}
}
}
return dp[amount] > amount ? -1 : dp[amount];
}
}
dp[i][j]
表示word1前i个字符和word2前j个字符的最少编辑距离。
word1[i-1] === word2[j-1]
,说明最后一个字符不用操作,此时dp[i][j] = dp[i-1][j-1]
,即此时的最小操作数和word1和word2都减少一个字符的最小编辑数相同word1[i-1] !== word2[j-1]
,则分为三种情况
dp[i-1][j]
,即dp[i][j] = dp[i-1][j] + 1
,+1指删除操作dp[i][j-1]
,即dp[i][j] = dp[i][j-1] + 1
,+1指增加操作dp[i-1][j-1]
,即dp[i] [j] = dp[i-1] [j-1] + 1,+1指替换操作O(mn)
,m是word1的长度,n是word2的长度。空间复杂度是O(mn)
,需要用m * n大小的二维数字存储状态。Js:
const minDistance = (word1, word2) => {
let dp = Array.from(Array(word1.length + 1), () => Array(word2.length + 1).fill(0));
//初始化数组,word1前i个字符最少需要i次操作,比如i次删除变成word2
for (let i = 1; i <= word1.length; i++) {
dp[i][0] = i;
}
//初始化数组,word2前i个字符最少需要i次操作,比如j次插入变成word1
for (let j = 1; j <= word2.length; j++) {
dp[0][j] = j;
}
for (let i = 1; i <= word1.length; i++) {
//循环word1和word2
for (let j = 1; j <= word2.length; j++) {
if (word1[i - 1] === word2[j - 1]) {
//如果word1[i-1] === word2[j-1],说明最后一个字符不用操作。
dp[i][j] = dp[i - 1][j - 1];
} else {
//dp[i-1][j] + 1:对应删除
//dp[i][j-1] + 1:对应新增
// dp[i-1][j-1] + 1:对应替换操作
dp[i][j] = Math.min(dp[i - 1][j] + 1, dp[i][j - 1] + 1, dp[i - 1][j - 1] + 1);
}
}
}
return dp[word1.length][word2.length];
};
Java:
public int minDistance(String word1, String word2) {
int m = word1.length();
int n = word2.length();
int[][] dp = new int[m + 1][n + 1];
for (int i = 1; i <= m; i++) {
dp[i][0] = i;
}
for (int j = 1; j <= n; j++) {
dp[0][j] = j;
}
for (int i = 1; i <= m; i++) {
for (int j = 1; j <= n; j++) {
if (word1.charAt(i - 1) == word2.charAt(j - 1)) {
dp[i][j] = dp[i - 1][j - 1];
} else {
dp[i][j] = Math.min(Math.min(dp[i - 1][j - 1], dp[i][j - 1]), dp[i - 1][j]) + 1;
}
}
}
return dp[m][n];
}
dp[i][j]
表示 s 的前 i 个字符能否和p的前j个字符匹配,分为四种情况,看图O(mn)
,m,n分别是字符串s和p的长度,需要嵌套循环s和p。空间复杂度O(mn)
,dp数组所占的空间js:
//dp[i][j]表示s的前i个字符能否和p的前j个字符匹配
const isMatch = (s, p) => {
if (s == null || p == null) return false;//极端情况 s和p都是空 返回false
const sLen = s.length, pLen = p.length;
const dp = new Array(sLen + 1);//因为位置是从0开始的,第0个位置是空字符串 所以初始化长度是sLen + 1
for (let i = 0; i < dp.length; i++) {//初始化dp数组
dp[i] = new Array(pLen + 1).fill(false); // 将项默认为false
}
// base case s和p第0个位置是匹配的
dp[0][0] = true;
for (let j = 1; j < pLen + 1; j++) {//初始化dp的第一列,此时s的位置是0
//情况1:如果p的第j-1个位置是*,则j的状态等于j-2的状态
//例如:s='' p='a*' 相当于p向前看2个位置如果匹配,则*相当于重复0个字符
if (p[j - 1] == "*") dp[0][j] = dp[0][j - 2];
}
// 迭代
for (let i = 1; i < sLen + 1; i++) {
for (let j = 1; j < pLen + 1; j++) {
//情况2:如果s和p当前字符是相等的 或者p当前位置是. 则当前的dp[i][j] 可由dp[i - 1][j - 1]转移过来
//当前位置相匹配,则s和p都向前看一位 如果前面所有字符相匹配 则当前位置前面的所有字符也匹配
//例如:s='XXXa' p='XXX.' 或者 s='XXXa' p='XXXa'
if (s[i - 1] == p[j - 1] || p[j - 1] == ".") {
dp[i][j] = dp[i - 1][j - 1];
} else if (p[j - 1] == "*") {//情况3:进入当前字符不匹配的分支 如果当前p是* 则有可能会匹配
//s当前位置和p前一个位置相同 或者p前一个位置等于. 则有三种可能
//其中一种情况能匹配 则当前位置的状态也能匹配
//dp[i][j - 2]:p向前看2个位置,相当于*重复了0次,
//dp[i][j - 1]:p向前看1个位置,相当于*重复了1次
//dp[i - 1][j]:s向前看一个位置,相当于*重复了n次
//例如 s='XXXa' p='XXXa*'
if (s[i - 1] == p[j - 2] || p[j - 2] == ".") {
dp[i][j] = dp[i][j - 2] || dp[i][j - 1] || dp[i - 1][j];
} else {
//情况4:s当前位置和p前2个位置不匹配,则相当于*重复了0次
//例如 s='XXXb' p='XXXa*' 当前位置的状态和p向前看2个位置的状态相同
dp[i][j] = dp[i][j - 2];
}
}
}
}
return dp[sLen][pLen]; // 长为sLen的s串 是否匹配 长为pLen的p串
};
Java:
class Solution {
public boolean isMatch(String s, String p) {
if (p==null){
if (s==null){
return true;
}else{
return false;
}
}
if (s==null && p.length()==1){
return false;
}
int m = s.length()+1;
int n = p.length()+1;
boolean[][]dp = new boolean[m][n];
dp[0][0] = true;
for (int j=2;j<n;j++){
if (p.charAt(j-1)=='*'){
dp[0][j] = dp[0][j-2];
}
}
for (int r=1;r<m;r++){
int i = r-1;
for (int c=1;c<n;c++){
int j = c-1;
if (s.charAt(i)==p.charAt(j) || p.charAt(j)=='.'){
dp[r][c] = dp[r-1][c-1];
}else if (p.charAt(j)=='*'){
if (p.charAt(j-1)==s.charAt(i) || p.charAt(j-1)=='.'){
dp[r][c] = dp[r-1][c] || dp[r][c-2];
}else{
dp[r][c] = dp[r][c-2];
}
}else{
dp[r][c] = false;
}
}
}
return dp[m-1][n-1];
}
}
dp[i][j]
表示开区间 (i,j)
能拿到的的金币,k是这个区间 最后一个 被戳爆的气球,枚举i
和j
,遍历所有区间,i-j
能获得的最大数量的金币等于 戳破当前的气球获得的金钱加上之前i-k
、k-j
区间中已经获得的金币O(n^3)
,n是气球的数量,三层遍历。空间复杂度O(n^2)
,dp数组的空间。js:
var maxCoins = function (nums) {
const n = nums.length;
let points = [1, ...nums, 1]; //两边添加虚拟气球
const dp = Array.from(Array(n + 2), () => Array(n + 2).fill(0)); //dp数组初始化
//自底向上转移状态
for (let i = n; i >= 0; i--) {
//i不断减小
for (let j = i + 1; j < n + 2; j++) {
//j不断扩大
for (let k = i + 1; k < j; k++) {
//枚举k在i和j中的所有可能
//i-j能获得的最大数量的金币等于 戳破当前的气球获得的金钱加上之前i-k,k-j区间中已经获得的金币
dp[i][j] = Math.max(
//挑战最大值
dp[i][j],
dp[i][k] + dp[k][j] + points[j] * points[k] * points[i]
);
}
}
}
return dp[0][n + 1];
};
java:
class Solution {
public int maxCoins(int[] nums) {
int n = nums.length;
int[][] dp = new int[n + 2][n + 2];
int[] val = new int[n + 2];
val[0] = val[n + 1] = 1;
for (int i = 1; i <= n; i++) {
val[i] = nums[i - 1];
}
for (int i = n - 1; i >= 0; i--) {
for (int j = i + 2; j <= n + 1; j++) {
for (int k = i + 1; k < j; k++) {
int sum = val[i] * val[k] * val[j];
sum += dp[i][k] + dp[k][j];
dp[i][j] = Math.max(dp[i][j], sum);
}
}
}
return dp[0][n + 1];
}
}
dp[i]
为正整数i拆分之后的最大乘积,循环数字n,对每个数字进行拆分,取最大的乘积,状态转移方程:dp[i] = Math.max(dp[i], dp[i - j] * j, (i - j) * j)
,j*(i-j)
表示把i拆分为j
和i-j两个数相乘,j * dp[i-j]
表示把i
拆分成j
和继续把(i-j)
这个数拆分,取(i-j)
拆分结果中的最大乘积与j相乘O(n^2)
,两层循环。空间复杂度O(n)
,dp
数组的空间js:
var integerBreak = function (n) {
//dp[i]为正整数i拆分之后的最大乘积
let dp = new Array(n + 1).fill(0);
dp[2] = 1;
for (let i = 3; i <= n; i++) {
for (let j = 1; j < i; j++) {
//j*(i-j)表示把i拆分为j和i-j两个数相乘
//j*dp[i-j]表示把i拆分成j和继续把(i-j)这个数拆分,取(i-j)拆分结果中的最大乘积与j相乘
dp[i] = Math.max(dp[i], dp[i - j] * j, (i - j) * j);
}
}
return dp[n];
};
java:
class Solution {
public int integerBreak(int n) {
int[] dp = new int[n+1];
dp[2] = 1;//初始状态
for (int i = 3; i <= n; ++i) {
for (int j = 1; j < i - 1; ++j) {
dp[i] = Math.max(dp[i], Math.max(j * (i - j), j * dp[i - j]));
}
}
return dp[n];
}
}
0-1背包问题指的是有n
个物品和容量为j
的背包,weight
数组中记录了n
个物品的重量,位置i
的物品重量是weight[i],value
数组中记录了n
个物品的价值,位置i的物品价值是vales[i]
,每个物品只能放一次到背包中,问将那些物品装入背包,使背包的价值最大。
举例:
我们用动态规划的方式来做
状态定义:dp[i][j]
表示从前i个物品里任意取,放进容量为j的背包,价值总和最大是多少
状态转移方程: dp[i][j] = max(dp[i - 1][j]
, dp[i - 1][j - weight[i]] + value[i])
; 每个物品有放入背包和不放入背包两种情况
j - weight[i]<0
:表示装不下i
号元素了,不放入背包,此时dp[i][j] = dp[i - 1][j]
,dp[i] [j]取决于前i-1
中的物品装入容量为j
的背包中的最大价值j - weight[i]>=0
:可以选择放入或者不放入背包。dp[i][j] = dp[i - 1][j - weight[i]] + value[i]
, dp[i - 1][j - weight[i]]
表示i-1
中的物品装入容量为j-weight[i]
的背包中的最大价值,然后在加上放入的物品的价值value[i]
就可以将状态转移到dp[i][j]
。dp[i][j] = dp[i - 1] [j]
,在这两种情况中取较大者。初始化dp数组:dp[i][0]
表示背包的容积为0,则背包的价值一定是0,dp[0][j]
表示第0号物品放入背包之后背包的价值
最终需要返回值:就是dp数组的最后一行的最后一列
循环完成之后的dp数组如下图
js:
function testWeightBagProblem(wight, value, size) {
const len = wight.length,
dp = Array.from({ length: len + 1 }).map(//初始化dp数组
() => Array(size + 1).fill(0)
);
//注意我们让i从1开始,因为我们有时会用到i - 1,为了防止数组越界
//所以dp数组在初始化的时候,长度是wight.length+1
for (let i = 1; i <= len; i++) {
for (let j = 0; j <= size; j++) {
//因为weight的长度是wight.length+1,并且物品下标从1开始,所以这里i要减1
if (wight[i - 1] <= j) {
dp[i][j] = Math.max(
dp[i - 1][j],
value[i - 1] + dp[i - 1][j - wight[i - 1]]
)
} else {
dp[i][j] = dp[i - 1][j];
}
}
}
return dp[len][size];
}
function test() {
console.log(testWeightBagProblem([1, 3, 4], [15, 20, 30], 4));
}
test();
根据状态转移方程dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i])
,第i行只与第i-1行状态相关,所以我们可以用滚动数组进行状态压缩,其次我们注意到,j只与j前面的状态相关,所以只用一个数组从后向前计算状态就可以了。
动画过大,点击查看
function testWeightBagProblem2(wight, value, size) {
const len = wight.length,
dp = Array(size + 1).fill(0);
for (let i = 1; i <= len; i++) {
//从后向前计算,如果从前向后的话,最新的值会覆盖老的值,导致计算结果不正确
//dp[i][j] = Math.max(dp[i - 1][j], dp[i - 1][j - wight[i - 1]] + value[i - 1])
for (let j = size; j >= wight[i - 1]; j--) {
dp[j] = Math.max(dp[j], dp[j - wight[i - 1]] + value[i - 1] );
}
}
return dp[size];
}
sum / 2
的背包和 N 个物品,每个物品的重量记录在 nums 数组中,问是否在一种装法,能够恰好将背包装满?dp[i][j]
表示前i个物品是否能装满容积为j的背包,当dp[i][j]
为true时表示恰好可以装满。每个数都有放入背包和不放入两种情况,分析方法和0-1背包问题一样。O(n*sum)
,n是nums数组长度,sum是nums数组元素的和。空间复杂度O(n * sum)
,状态压缩之后是O(sum)
js:
//可以看成是0-1背包问题,给一个可装载重量为 sum / 2 的背包和 N 个物品,
//每个物品的重量记录在 nums 数组中,问是否在一种装法,能够恰好将背包装满?
var canPartition = function (nums) {
let sum = 0
let n = nums.length
for (let i = 0; i < n; i++) {
sum += nums[i]
}
if (sum % 2 !== 0) {//如果是奇数,那么分割不了,直接返回false
return false
}
sum = sum / 2
//dp[i][j]表示前i个物品是否能装满容积为j的背包,当dp[i][j]为true时表示恰好可以装满
//最后求的是 dp[n][sum] 表示前n个物品能否把容量为sum的背包恰好装满
//dp数组长度是n+1,而且是二维数组,第一维表示物品的索引,第二个维度表示背包大小
let dp = new Array(n + 1).fill(0).map(() => new Array(sum + 1).fill(false))
//dp数组初始化,dp[..][0] = true表示背包容量为0,这时候就已经装满了,
//dp[0][..] = false 表示没有物品,肯定装不满
for (let i = 0; i <= n; i++) {
dp[i][0] = true
}
for (let i = 1; i <= n; i++) {//i从1开始遍历防止取dp[i - 1][j]的时候数组越界
let num = nums[i - 1]
//j从1开始,j为0的情况已经在dp数组初始化的时候完成了
for (let j = 1; j <= sum; j++) {
if (j - num < 0) {//背包容量不足 不能放入背包
dp[i][j] = dp[i - 1][j];//dp[i][j]取决于前i-1个物品是否能前好装满j的容量
} else {
//dp[i - 1][j]表示不装入第i个物品
//dp[i - 1][j-num]表示装入第i个,此时需要向前看前i - 1是否能装满j-num
//和背包的区别,这里只是返回true和false 表示能否装满,不用计算价值
dp[i][j] = dp[i - 1][j] || dp[i - 1][j - num];
}
}
}
return dp[n][sum]
};
//状态转移方程 F[i, target] = F[i - 1, target] || F[i - 1, target - nums[i]]
//第 n 行的状态只依赖于第 n-1 行的状态
//状态压缩
var canPartition = function (nums) {
let sum = nums.reduce((acc, num) => acc + num, 0);
if (sum % 2) {
return false;
}
sum = sum / 2;
const dp = Array.from({ length: sum + 1 }).fill(false);
dp[0] = true;
for (let i = 1; i <= nums.length; i++) {
//从后向前计算,如果从前向后的话,最新的值会覆盖老的值,导致计算结果不正确
for (let j = sum; j > 0; j--) {
dp[j] = dp[j] || (j - nums[i] >= 0 && dp[j - nums[i]]);
}
}
return dp[sum];
};
java:
public class Solution {
public boolean canPartition(int[] nums) {
int len = nums.length;
int sum = 0;
for (int num : nums) {
sum += num;
}
if ((sum & 1) == 1) {
return false;
}
int target = sum / 2;
boolean[][] dp = new boolean[len][target + 1];
dp[0][0] = true;
if (nums[0] <= target) {
dp[0][nums[0]] = true;
}
for (int i = 1; i < len; i++) {
for (int j = 0; j <= target; j++) {
dp[i][j] = dp[i - 1][j];
if (nums[i] <= j) {
dp[i][j] = dp[i - 1][j] || dp[i - 1][j - nums[i]];
}
}
if (dp[i][target]) {
return true;
}
}
return dp[len - 1][target];
}
}
//状态压缩
public class Solution {
public boolean canPartition(int[] nums) {
int len = nums.length;
int sum = 0;
for (int num : nums) {
sum += num;
}
if ((sum & 1) == 1) {
return false;
}
int target = sum / 2;
boolean[] dp = new boolean[target + 1];
dp[0] = true;
if (nums[0] <= target) {
dp[nums[0]] = true;
}
for (int i = 1; i < len; i++) {
for (int j = target; nums[i] <= j; j--) {
if (dp[target]) {
return true;
}
dp[j] = dp[j] || dp[j - nums[i]];
}
}
return dp[target];
}
}
dp[i]
表示0-i能偷的最大金额,dp[i]
由两种情况中的最大值转移过来
dp[i - 2] + nums[i]
表示偷当前位置,那么i-1的位置不能偷,而且需要加上dp[i-2]
,也就是前i-2个房间的金钱dp[i - 1]
表示偷当前位置,只偷i-1的房间O(n)
,遍历一次数组,空间复杂度O(1)
,状态压缩之后是O(1)
,没有状态压缩是O(n)
js:
//dp[i]表示0-i能偷的最大金额
const rob = (nums) => {
const len = nums.length;
const dp = [nums[0], Math.max(nums[0], nums[1])]; //初始化dp数组的前两项
for (let i = 2; i < len; i++) {
//从第三个位置开始遍历
//dp[i - 2] + nums[i] 表示偷当前位置,那么i-1的位置不能偷,
//而且需要加上dp[i-2],也就是前i-2个房间的金钱
//dp[i - 1]表示偷当前位置,只偷i-1的房间
dp[i] = Math.max(dp[i - 2] + nums[i], dp[i - 1]);
}
return dp[len - 1]; //返回最后最大的项
};
//状态压缩
var rob = function (nums) {
if(nums.length === 1) return nums[0]
let len = nums.length;
let dp_0 = nums[0],
dp_1 = Math.max(nums[0], nums[1]);
let dp_max = dp_1;
for (let i = 2; i < len; i++) {
dp_max = Math.max(
dp_1, //不抢当前家
dp_0 + nums[i] //抢当前家
);
dp_0 = dp_1; //滚动交换变量
dp_1 = dp_max;
}
return dp_max;
};
java:
class Solution {
public int rob(int[] nums) {
if (nums == null || nums.length == 0) {
return 0;
}
int length = nums.length;
if (length == 1) {
return nums[0];
}
int[] dp = new int[length];
dp[0] = nums[0];
dp[1] = Math.max(nums[0], nums[1]);
for (int i = 2; i < length; i++) {
dp[i] = Math.max(dp[i - 2] + nums[i], dp[i - 1]);
}
return dp[length - 1];
}
}
//状态压缩
class Solution {
public int rob(int[] nums) {
if (nums == null || nums.length == 0) {
return 0;
}
int len = nums.length;
int dp_0 = 0,
dp_1 = nums[0];
int dp_max = nums[0];
for (int i = 2; i <= len; i++) {
dp_max = Math.max(
dp_1, //不抢当前家
dp_0 + nums[i - 1] //抢当前家
);
dp_0 = dp_1; //滚动交换变量
dp_1 = dp_max;
}
return dp_max;
}
}
dp[i][j]
表示从矩阵左上角到(i,j)
这个网格对应的最小路径和,只要从上到下,从左到右遍历网格,当前最小路径和就是当前的数值加上上面和左边左小的。O(mn)
,m、n分别是矩阵的长和宽。空间复杂度如果原地修改是O(1)
,如果新建dp数组就是O(mn)
js:
var minPathSum = function(dp) {
let row = dp.length, col = dp[0].length
for(let i = 1; i < row; i++)//初始化第一列
dp[i][0] += dp[i - 1][0]
for(let j = 1; j < col; j++)//初始化第一行
dp[0][j] += dp[0][j - 1]
for(let i = 1; i < row; i++)
for(let j = 1; j < col; j++)
dp[i][j] += Math.min(dp[i - 1][j], dp[i][j - 1])//取上面和左边最小的
return dp[row - 1][col - 1]
};
java:
class Solution {
public int minPathSum(int[][] grid) {
if (grid == null || grid.length == 0 || grid[0].length == 0) {
return 0;
}
int rows = grid.length, columns = grid[0].length;
int[][] dp = new int[rows][columns];
dp[0][0] = grid[0][0];
for (int i = 1; i < rows; i++) {
dp[i][0] = dp[i - 1][0] + grid[i][0];
}
for (int j = 1; j < columns; j++) {
dp[0][j] = dp[0][j - 1] + grid[0][j];
}
for (int i = 1; i < rows; i++) {
for (int j = 1; j < columns; j++) {
dp[i][j] = Math.min(dp[i - 1][j], dp[i][j - 1]) + grid[i][j];
}
}
return dp[rows - 1][columns - 1];
}
}