自然语言处理(七): Deep Learning for NLP: Recurrent Networks

目录

1. N-gram Language Models

2. Recurrent Neural Networks

2.1 RNN Unrolled

2.2 RNN Training

2.3 (Simple) RNN for Language Model

2.4 RNN Language Model: Training

2.5 RNN Language Model: Generation

3. Long Short-term Memory Networks

3.1 Language Model… Solved?

3.2 Long Short-term Memory (LSTM)

3.3 Gating Vector

3.4 Simple RNN vs. LSTM

3.5 LSTM: Forget Gate

3.6 LSTM: Input Gate

3.7 LSTM: Update Memory Cell

3.8 LSTM: Output Gate

3.9 LSTM: Summary

4. Applications

4.1 Shakespeare Generator

4.2 Wikipedia Generator 

4.3 Code Generator 

 4.4 Deep-Speare

4.5 Text Classification

 4.6 Sequence Labeling

4.7 Variants 

4.8 Multi-layer LSTM

4.9 Bidirectional LSTM

5. Final Words


1. N-gram Language Models

- Can be implemented using counts (with smoothing) 可利用计数(经平滑处理)来实施

- Can be implemented using feed-forward neural networks 可以使用前馈神经网络实现

- Generates sentences like (trigram model): 生成类似(三元模型)的句子:

  • I saw a table is round and about
  • I saw a
  • I saw a table
  • I saw a table is
  • I saw a table is round
  • I saw a table is round and

- Problem: limited context

2. Recurrent Neural Networks

Allow representation of arbitrarily sized inputs 允许表示任意大小的输入

Core ldea: processes the input sequence one at a time, by applying a recurrence formula 核心理念: 通过应用递归公式,一次处理一个输入序列

Uses a state vector to represent contexts that have been previously processed 使用状态向量表示以前处理过的上下文

自然语言处理(七): Deep Learning for NLP: Recurrent Networks_第1张图片

自然语言处理(七): Deep Learning for NLP: Recurrent Networks_第2张图片

2.1 RNN Unrolled

自然语言处理(七): Deep Learning for NLP: Recurrent Networks_第3张图片

2.2 RNN Training

自然语言处理(七): Deep Learning for NLP: Recurrent Networks_第4张图片

- An unrolled RNN is just a very deep neural network 一个展开的 RNN 只是一个非常深的神经网络

- But parameters are shared across all time steps 但是参数是在所有时间步骤中共享的

- To train RNN, we just need to create the unrolled computation graph given an input sequence 为了训练 RNN,我们只需要创建一个给定输入序列的展开计算图

- And use backpropagation algorithm to compute gradients as usual 并像往常一样使用反向传播算法计算梯度

- This procedure is called backpropagation through time 这个过程叫做时间反向传播

2.3 (Simple) RNN for Language Model

自然语言处理(七): Deep Learning for NLP: Recurrent Networks_第5张图片

2.4 RNN Language Model: Training

自然语言处理(七): Deep Learning for NLP: Recurrent Networks_第6张图片

2.5 RNN Language Model: Generation

自然语言处理(七): Deep Learning for NLP: Recurrent Networks_第7张图片

3. Long Short-term Memory Networks

3.1 Language Model… Solved?

- RNN has the capability to model infinite context RNN 具有对无限上下文进行建模的能力

- But can it actually capture long-range dependencies in practice? 但是它真的能够在实践中捕获长期依赖吗?

- No… due to “vanishing gradients” 没有,因为“消失的梯度”

- Gradients in later steps diminish quickly during backpropagation 后阶梯度在反向传播过程中迅速减小

- Earlier inputs do not get much update 早期的输入不会得到太多更新

3.2 Long Short-term Memory (LSTM)

- LSTM is introduced to solve vanishing gradients 引入 LSTM 方法解决消失梯度问题

- Core idea: have "memory cells" that preserve gradients across time 核心理念: 拥有“记忆单元”,可以跨时间保持渐变

- Access to the memory cells is controlled by "gates" 进入存储单元是由“门”控制的

- For each input, a gate decides: 

  • how much the new input should be written to the memory cell 应该向存储单元写入多少新输入
  • and how much content of the current memory cell should be forgotten 以及当前内存单元格中有多少内容应该被遗忘

3.3 Gating Vector

- A gate g is a vector 

  • each element has values between 0 to 1

- g is multiplied component-wise with vector v, to determine how much information to keep for v 将 g 与向量 v 按分量相乘,以确定要为 v 保留多少信息

- Use sigmoid function to produce g:

  • values between 0 to 1

自然语言处理(七): Deep Learning for NLP: Recurrent Networks_第8张图片

3.4 Simple RNN vs. LSTM

自然语言处理(七): Deep Learning for NLP: Recurrent Networks_第9张图片

自然语言处理(七): Deep Learning for NLP: Recurrent Networks_第10张图片

3.5 LSTM: Forget Gate

自然语言处理(七): Deep Learning for NLP: Recurrent Networks_第11张图片

3.6 LSTM: Input Gate

自然语言处理(七): Deep Learning for NLP: Recurrent Networks_第12张图片

3.7 LSTM: Update Memory Cell

自然语言处理(七): Deep Learning for NLP: Recurrent Networks_第13张图片

3.8 LSTM: Output Gate

 

自然语言处理(七): Deep Learning for NLP: Recurrent Networks_第14张图片

3.9 LSTM: Summary

自然语言处理(七): Deep Learning for NLP: Recurrent Networks_第15张图片

4. Applications

4.1 Shakespeare Generator

- Training data = all works of Shakespeare

- Model: character RNN, hidden dimension = 512

自然语言处理(七): Deep Learning for NLP: Recurrent Networks_第16张图片

4.2 Wikipedia Generator 

Training data = 100MB of Wikipedia raw data

4.3 Code Generator 

自然语言处理(七): Deep Learning for NLP: Recurrent Networks_第17张图片

 4.4 Deep-Speare

 自然语言处理(七): Deep Learning for NLP: Recurrent Networks_第18张图片

4.5 Text Classification

自然语言处理(七): Deep Learning for NLP: Recurrent Networks_第19张图片

 4.6 Sequence Labeling

自然语言处理(七): Deep Learning for NLP: Recurrent Networks_第20张图片

4.7 Variants 

自然语言处理(七): Deep Learning for NLP: Recurrent Networks_第21张图片

4.8 Multi-layer LSTM

自然语言处理(七): Deep Learning for NLP: Recurrent Networks_第22张图片

4.9 Bidirectional LSTM

自然语言处理(七): Deep Learning for NLP: Recurrent Networks_第23张图片

5. Final Words

Pros

- Has the ability to capture long range contexts 有能力捕捉远距离环境

- Just like feedforward networks: flexible 就像前馈网络一样: 灵活

Cons

- Slower than FF networks due to sequential processing 由于顺序处理,比 FF 网络慢

- In practice doesn't capture long range dependency very well (evident when generating very long text) 实际上并不能很好地捕捉到长距离依赖关系(当生成非常长的文本时显而易见)

- In practice also doesn't stack well (multi-layer LSTM) 实际上也不能很好地叠加(多层 LSTM)

- Less popular nowadays due to the emergence of more advanced architectures 现在没那么受欢迎了

你可能感兴趣的:(NLP自然语言处理,深度学习,自然语言处理,人工智能)