Fluid 给数据弹性一双隐形的翅膀 -- 自定义弹性伸缩,mysql基础教程

否则手动执行以下命令:

kubectl create -f integration/custom-metrics-api/namespace.yaml

kubectl create -f integration/custom-metrics-api

注意:因为 custom-metrics-api 对接集群中的 Prometheous 的访问地址,请替换 prometheous url 为你真正使用的 Prometheous 地址。

检查自定义指标:

$ kubectl get --raw “/apis/custom.metrics.k8s.io/v1beta1” | jq

{

“kind”: “APIResourceList”,

“apiVersion”: “v1”,

“groupVersion”: “custom.metrics.k8s.io/v1beta1”,

“resources”: [

{

“name”: “pods/capacity_used_rate”,

“singularName”: “”,

“namespaced”: true,

“kind”: “MetricValueList”,

“verbs”: [

“get”

]

},

{

“name”: “datasets.data.fluid.io/capacity_used_rate”,

“singularName”: “”,

“namespaced”: true,

“kind”: “MetricValueList”,

“verbs”: [

“get”

]

},

{

“name”: “namespaces/capacity_used_rate”,

“singularName”: “”,

“namespaced”: false,

“kind”: “MetricValueList”,

“verbs”: [

“get”

]

}

]

}

7. 提交测试使用的 Dataset。


$ cat

apiVersion: data.fluid.io/v1alpha1

kind: Dataset

metadata:

name: spark

spec:

mounts:

  • mountPoint: https://mirrors.bit.edu.cn/apache/spark/

name: spark


apiVersion: data.fluid.io/v1alpha1

kind: AlluxioRuntime

metadata:

name: spark

spec:

replicas: 1

tieredstore:

levels:

  • mediumtype: MEM

path: /dev/shm

quota: 1Gi

high: “0.99”

low: “0.7”

properties:

alluxio.user.streaming.data.timeout: 300sec

EOF

$ kubectl create -f dataset.yaml

dataset.data.fluid.io/spark created

alluxioruntime.data.fluid.io/spark created

8. 查看这个 Dataset 是否处于可用状态。


可以看到该数据集的数据总量为 2.71GiB, 目前 Fluid 提供的缓存节点数为 1,可以提供的最大缓存能力为 1GiB。此时数据量是无法满足全量数据缓存的需求。

$ kubectl get dataset

NAME UFS TOTAL SIZE CACHED CACHE CAPACITY CACHED PERCENTAGE PHASE AGE

spark 2.71GiB 0.00B 1.00GiB 0.0% Bound 7m38s

9. 当该 Dataset 处于可用状态后,查看是否已经可以从 custom-metrics-api 获得监控指标。


kubectl get --raw “/apis/custom.metrics.k8s.io/v1beta1/namespaces/default/datasets.data.fluid.io/*/capacity_used_rate” | jq

{

“kind”: “MetricValueList”,

“apiVersion”: “custom.metrics.k8s.io/v1beta1”,

“metadata”: {

“selfLink”: “/apis/custom.metrics.k8s.io/v1beta1/namespaces/default/datasets.data.fluid.io/%2A/capacity_used_rate”

},

“items”: [

{

“describedObject”: {

“kind”: “Dataset”,

“namespace”: “default”,

“name”: “spark”,

“apiVersion”: “data.fluid.io/v1alpha1”

},

“metricName”: “capacity_used_rate”,

“timestamp”: “2021-04-04T07:24:52Z”,

“value”: “0”

}

]

}

10. 创建 HPA 任务。


$ cat< hpa.yaml

apiVersion: autoscaling/v2beta2

kind: HorizontalPodAutoscaler

metadata:

name: spark

spec:

scaleTargetRef:

apiVersion: data.fluid.io/v1alpha1

kind: AlluxioRuntime

name: spark

minReplicas: 1

maxReplicas: 4

metrics:

  • type: Object

object:

metric:

name: capacity_used_rate

describedObject:

apiVersion: data.fluid.io/v1alpha1

kind: Dataset

name: spark

target:

type: Value

value: “90”

behavior:

scaleUp:

policies:

  • type: Pods

value: 2

periodSeconds: 600

scaleDown:

selectPolicy: Disabled

EOF

首先,我们解读一下从样例配置,这里主要有两部分一个是扩缩容的规则,另一个是扩缩容的灵敏度:

  • 规则:触发扩容行为的条件为 Dataset 对象的缓存数据量占总缓存能力的 90%;扩容对象为AlluxioRuntime,最小副本数为 1,最大副本数为 4;而 Dataset 和 AlluxioRuntime 的对象需要在同一个 namespace。

  • 策略:可以 K8s 1.18 以上的版本,可以分别针对扩容和缩容场景设置稳定时间和一次扩缩容步长比例。比如在本例子, 一次扩容周期为 10 分钟(periodSeconds),扩容时新增 2 个副本数,当然这也不可以超过 maxReplicas 的限制;而完成一次扩容后,冷却时间(stabilizationWindowSeconds)为 20 分钟;而缩容策略可以选择直接关闭。

11. 查看 HPA 配置, 当前缓存空间的数据占比为 0。远远低于触发扩容的条件。


$ kubectl get hpa

NAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGE

spark AlluxioRuntime/spark 0/90 1 4 1 33s

$ kubectl describe hpa

Name: spark

Namespace:

《一线大厂Java面试题解析+后端开发学习笔记+最新架构讲解视频+实战项目源码讲义》

【docs.qq.com/doc/DSmxTbFJ1cmN1R2dB】 完整内容开源分享

      default

Labels:

Annotations:

CreationTimestamp: Wed, 07 Apr 2021 17:36:39 +0800

Reference: AlluxioRuntime/spark

Metrics: ( current / target )

“capacity_used_rate” on Dataset/spark (target value): 0 / 90

Min replicas: 1

Max replicas: 4

Behavior:

Scale Up:

Stabilization Window: 0 seconds

Select Policy: Max

Policies:

  • Type: Pods Value: 2 Period: 600 seconds

Scale Down:

Select Policy: Disabled

Policies:

  • Type: Percent Value: 100 Period: 15 seconds

AlluxioRuntime pods: 1 current / 1 desired

Conditions:

Type Status Reason Message


AbleToScale True ScaleDownStabilized recent recommendations were higher than current one, applying the highest recent recommendation

ScalingActive True ValidMetricFound the HPA was able to successfully calculate a replica count from Dataset metric capacity_used_rate

ScalingLimited False DesiredWithinRange the desired count is within the acceptable range

Events:

12. 创建数据预热任务。


$ cat< dataload.yaml

apiVersion: data.fluid.io/v1alpha1

kind: DataLoad

metadata:

name: spark

spec:

dataset:

name: spark

namespace: default

EOF

$ kubectl create -f dataload.yaml

$ kubectl get dataload

NAME DATASET PHASE AGE DURATION

spark spark Executing 15s Unfinished

13. 此时可以发现缓存的数据量接近了 Fluid 可以提供的缓存能力(1GiB)同时触发了弹性伸缩的条件。


$ kubectl get dataset

NAME UFS TOTAL SIZE CACHED CACHE CAPACITY CACHED PERCENTAGE PHASE AGE

spark 2.71GiB 1020.92MiB 1.00GiB 36.8% Bound 5m15s

从 HPA 的监控,可以看到 Alluxio Runtime 的扩容已经开始, 可以发现扩容的步长为 2。

$ kubectl get hpa

NAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGE

spark AlluxioRuntime/spark 100/90 1 4 2 4m20s

$ kubectl describe hpa

Name: spark

Namespace: default

Labels:

Annotations:

CreationTimestamp: Wed, 07 Apr 2021 17:56:31 +0800

Reference: AlluxioRuntime/spark

Metrics: ( current / target )

“capacity_used_rate” on Dataset/spark (target value): 100 / 90

Min replicas: 1

Max replicas: 4

Behavior:

Scale Up:

Stabilization Window: 0 seconds

Select Policy: Max

Policies:

  • Type: Pods Value: 2 Period: 600 seconds

Scale Down:

Select Policy: Disabled

Policies:

  • Type: Percent Value: 100 Period: 15 seconds

AlluxioRuntime pods: 2 current / 3 desired

Conditions:

Type Status Reason Message


AbleToScale True SucceededRescale the HPA controller was able to update the target scale to 3

ScalingActive True ValidMetricFound the HPA was able to successfully calculate a replica count from Dataset metric capacity_used_rate

ScalingLimited False DesiredWithinRange the desired count is within the acceptable range

Events:

Type Reason Age From Message


Normal SuccessfulRescale 21s horizontal-pod-autoscaler New size: 2; reason: Dataset metric capacity_used_rate above target

Normal SuccessfulRescale 6s horizontal-pod-autoscaler New size: 3; reason: Dataset metric capacity_used_rate above target

14. 在等待一段时间之后发现数据集的缓存空间由 1GiB 提升到了 3GiB,数据缓存已经接近完成。


$ kubectl get dataset

NAME UFS TOTAL SIZE CACHED CACHE CAPACITY CACHED PERCENTAGE PHASE AGE

spark 2.71GiB 2.59GiB 3.00GiB 95.6% Bound 12m

同时观察 HPA 的状态,可以发现此时 Dataset 对应的 runtime 的 replicas 数量为 3, 已经使用的缓存空间比例 capacity_used_rate 为 85%,已经不会触发缓存扩容。

你可能感兴趣的:(程序员,面试,java,后端)