数据无量纲化 学习(2):数据缩放(数据标准化 / 数据无量纲化 )的作用、适用场景、具体方法

一、数据无量纲化

将不同规格的数据转换到同一规格,或将不同分布的数据转换到某个特定分布的需求,这种需求统称为将数据“无量纲化”。

  • 在以梯度和矩阵为核心的算法中,譬如逻辑回归,支持向量机,神经网络,无量纲化可以加快求解速度;
  • 在距离类模型,譬如K近邻,KMeans聚类中,无量纲化可以帮我们提升模型精度,避免某一个取值范围特别大的特征对距离计算造成影响。
  • 一个特例是决策树和树的集成算法们,对决策树、不需要无量纲化,决策树可以把任意数据都处理得很好。

数据的无量纲化可以是线性的,也可以是非线性的。线性的无量纲化包括中心化(Zero-centered或者Mean-subtraction)处理和缩放处理(Scale)。

  • 中心化的本质是让所有记录减去一个固定值,即让数据样本数据平移到某个位置。
  • 缩放的本质是通过除以一个固定值,将数据固定在某个范围之中,取对数也算是一种缩放处理。

二、数据无量纲化的作用

  • 提升模型精度:标准化 / 归一化使不同维度的特征在数值上更具比较性,提高分类器的准确性。
  • 提升收敛速度:对于线性模型,数据归一化使梯度下降过程更加平缓,更易正确的收敛到最优解。

三、各种数据无量纲化的适用场景

1.哪些算法需要无量纲化

  • 涉及或隐含距离计算的算法&#

你可能感兴趣的:(特征工程,机器学习,python,特征工程,数据标准化,数据无量纲化)