* 文末参加视频直播,第一期特别神秘大咖究竟是谁?欢迎大家扫码入群,观看直播。
近年来,大数据这个词的热度很高,受到公众的广泛关注。
对于很多人来说,当他第一次听到“大数据”这个词,会自然而然从字面上去理解——认为大数据就是大量的数据,大数据技术就是大量数据的存储技术。
但事实上,它并不只是一项存储技术,而是一系列和海量数据相关的抽取、集成、管理、分析、解释技术。大数据系统,是一个庞大的框架系统。
更进一步来说,大数据是一种全新的思维方式和商业模式。
图片来自网络
今天这篇文章,就让我们来深入了解一下,到底什么是大数据。
大数据的定义
首先,我们看看大数据的定义。
行业里对大数据的定义有很多,有广义的定义,也有狭义的定义。
广义的定义,有点哲学味道——大数据,是指物理世界到数字世界的映射和提炼。通过发现其中的数据特征,从而做出提升效率的决策行为。
狭义的定义,是技术工程师给的——大数据,是通过获取、存储、分析,从大容量数据中挖掘价值的一种全新的技术架构。
相比较而言,狭义定义更好理解一些。
大家注意,关键词我都在上面原句加粗了:
要做什么?——获取数据、存储数据、分析数据
对谁做?——大容量数据
目的是什么?——挖掘价值
获取数据、存储数据、分析数据,这一系列的行为,都不算新奇。我们每天都在用电脑,每天都在干这个事。
例如,每月的月初,考勤管理员会获取每个员工的考勤信息,录入Excel表格,然后存在电脑里,统计分析有多少人迟到、缺勤,然后扣TA工资。
但是,同样的行为,放在大数据身上,就行不通了。换言之,传统个人电脑,传统常规软件,无力应对的数据级别,才叫“大数据”。
大数据,到底有多大?
我们传统的个人电脑,处理的数据,是GB/TB级别。例如,我们的硬盘,现在通常是1TB/2TB/4TB的容量。
TB、GB、MB、KB的关系,大家应该都很熟悉了:
1 KB = 1024 B (KB - kilobyte)
1 MB = 1024 KB (MB - megabyte)
1 GB = 1024 MB (GB - gigabyte)
1 TB = 1024 GB (TB - terabyte)
而大数据是什么级别呢?PB/EB级别。
大部分人都没听过。其实也就是继续乘以1024:
1 PB = 1024 TB (PB - petabyte)
1 EB = 1024 PB (EB - exabyte)
只是看这几个字母的话,貌似不是很直观。我来举个例子吧。
1TB,只需要一块硬盘可以存储。容量大约是20万张照片或20万首MP3音乐,或者是20万部电子书。
普通硬盘
1PB,需要大约2个机柜的存储设备。容量大约是2亿张照片或2亿首MP3音乐。如果一个人不停地听这些音乐,可以听1900年。。。
2个机柜
1EB,需要大约2000个机柜的存储设备。如果并排放这些机柜,可以连绵1.2公里那么长。如果摆放在机房里,需要21个标准篮球场那么大的机房,才能放得下。
21个篮球场
阿里、百度、腾讯这样的互联网巨头,数据量据说已经接近EB级。
阿里数据中心内景
EB还不是最大的。目前全人类的数据量,是ZB级。
1 ZB = 1024 EB (ZB - zettabyte)
2011年,全球被创建和复制的数据总量是1.8ZB。
而到2020年,全球电子设备存储的数据,将达到35ZB。如果建一个机房来存储这些数据,那么,这个机房的面积将比42个鸟巢体育场还大。
数据量不仅大,增长还很快——每年增长50%。也就是说,每两年就会增长一倍。
目前的大数据应用,还没有达到ZB级,主要集中在PB/EB级别。
大数据的级别定位
1 KB = 1024 B (KB - kilobyte)
1 MB = 1024 KB (MB - megabyte)
1 GB = 1024 MB (GB - gigabyte)
1 TB = 1024 GB (TB - terabyte)
1 PB = 1024 TB (PB - petabyte)
1 EB = 1024 PB (EB - exabyte)
1 ZB = 1024 EB (ZB - zettabyte)
数据的来源
数据的增长,为什么会如此之快?
说到这里,就要回顾一下人类社会数据产生的几个重要阶段。
大致来说,是三个重要的阶段。
第一个阶段,就是计算机被发明之后的阶段。尤其是数据库被发明之后,使得数据管理的复杂度大大降低。各行各业开始产生了数据,从而被记录在数据库中。这时的数据,以结构化数据为主(待会解释什么是“结构化数据”)。数据的产生方式,也是被动的。
世界上第一台通用计算机-ENIAC
第二个阶段,是伴随着互联网2.0时代出现的。互联网2.0的最重要标志,就是用户原创内容。随着互联网和移动通信设备的普及,人们开始使用博客、facebook、youtube这样的社交网络,从而主动产生了大量的数据。
第三个阶段,是感知式系统阶段。随着物联网的发展,各种各样的感知层节点开始自动产生大量的数据,例如遍布世界各个角落的传感器、摄像头。
经过了“被动-主动-自动”这三个阶段的发展,最终导致了人类数据总量的极速膨胀。
大数据的4个V
行业里对大数据的特点,概括为4个V。
前面所说的庞大数据体量,就是Volume(海量化)。除了Volume之外,剩下三个,分别是Variety、Velocity、Value。
我们一个一个来介绍。
Variety(多样化)
数据的形式是多种多样的,包括数字(价格、交易数据、体重、人数等)、文本(邮件、网页等)、图像、音频、视频、位置信息(经纬度、海拔等),等等,都是数据。
数据又分为结构化数据和非结构化数据。
从名字可以看出,结构化数据,是指可以用预先定义的数据模型表述,或者,可以存入关系型数据库的数据。
结构化数据
例如,一个班级所有人的年龄、一个超市所有商品的价格,这些都是结构化数据。
而网页文章、邮件内容、图像、音频、视频等,都属于非结构化数据。
在互联网领域里,非结构化数据的占比已经超过整个数据量的80%。
大数据,就符合这样的特点:数据形式多样化,且非结构化数据占比高。
Velocity(时效性)
大数据还有一个特点,那就是时效性。从数据的生成到消耗,时间窗口非常小。数据的变化速率,还有处理过程,越来越快。例如变化速率,从以前的按天变化,变成现在的按秒甚至毫秒变化。
我们还是用数字来说话:
就在刚刚过去的这一分钟,数据世界里发生了什么?
Email:2.04亿封被发出
Google:200万次搜索请求被提交
Youtube:2880分钟的视频被上传
Facebook:69.5万条状态被更新
Twitter:98000条推送被发出
12306:1840张车票被卖出
……
怎么样?是不是瞬息万变?
Value(价值密度)
最后一个特点,就是价值密度。
大数据的数据量很大,但随之带来的,就是价值密度很低,数据中真正有价值的,只是其中的很少一部分。
例如通过监控视频寻找犯罪分子的相貌,也许几TB的视频文件,真正有价值的,只有几秒钟。
2014年美国波士顿爆炸案,现场调取了10TB的监控数据(包括移动基站的通讯记录,附近商店、加油站、报摊的监控录像以及志愿者提供的影像资料),最终找到了嫌疑犯的一张照片。
大数据的价值
刚才说到价值密度,也就说到了大数据的核心本质,那就是价值。
人类提出大数据、研究大数据的主要目的,就是为了挖掘大数据里面的价值。
大数据,究竟有什么价值?
早在1980年,著名未来学家阿尔文·托夫勒在他的著作《第三次浪潮》中,就明确提出:“数据就是财富”,并且,将大数据称为“第三次浪潮的华彩乐章”。
第一次浪潮:农业阶段,约1万年前开始
第二次浪潮:工业阶段,17世纪末开始
第三次浪潮:信息化阶段,20世纪50年代后期开始
进入21世纪之后,随着前面所说的第二第三阶段的发展,移动互联网崛起,存储能力和云计算能力飞跃,大数据开始落地,也引起了越来越多的重视。
2012年的世界经济论坛指出:“数据已经成为一种新的经济资产类别,就像货币和黄金一样”。这无疑将大数据的价值推到了前所未有的高度层面上。
如今,大数据应用开始走进我们的生活,影响我们的衣食住行。
滴滴的大数据杀熟,相信大家都有所耳闻
之所以大数据会有这么快的发展,就是因为越来越多的行业和企业,开始认识到大数据的价值,开始试图参与挖掘大数据的价值。
归纳来说,大数据的价值主要来自于两个方面:
1 帮助企业了解用户
大数据通过相关性分析,将客户和产品、服务进行关系串联,对用户的偏好进行定位,从而提供更精准、更有导向性的产品和服务,提升销售业绩。
典型的例子就是电商。
像阿里淘宝这样的电子商务平台,积累了大量的用户购买数据。在早期的时候,这些数据都是累赘和负担,存储它们需要大量的硬件成本。但是,现在这些数据都是阿里最宝贵的财富。
通过这些数据,可以分析用户行为,精准定位目标客群的消费特点、品牌偏好、地域分布,从而引导商家的运营管理、品牌定位、推广营销等。
大数据可以对业绩产生直接影响。它的效率和准确性,远远超过传统的用户调研。
除了电商,包括能源、影视、证券、金融、农业、工业、交通运输、公共事业等,都是大数据的用武之地。
大数据甚至能够帮助竞选总统
2 帮助企业了解自己
除了帮助了解用户之外,大数据还能帮助了解自己。
企业生产经营需要大量的资源,大数据可以分析和锁定资源的具体情况,例如储量分布和需求趋势。这些资源的可视化,可以帮助企业管理者更直观地了解企业的运作状态,更快地发现问题,及时调整运营策略,降低经营风险。
总而言之,“知己知彼,百战百胜”。大数据,就是为决策服务的。
大数据和云计算
说到这里,我们要回答一个很多人心里都存在的疑惑——大数据和云计算之间,到底有什么关系?
可以这么解释:数据本身是一种资产,而云计算,则是为挖掘资产价值提供合适的工具。
从技术上,大数据是依赖于云计算的。云计算里面的海量数据存储技术、海量数据管理技术、分布式计算模型等,都是大数据技术的基础。
云计算就像是挖掘机,大数据就是矿山。如果没有云计算,大数据的价值就发挥不出来。
相反的,大数据的处理需求,也刺激了云计算相关技术的发展和落地。
也就是说,如果没有大数据这座矿山,云计算这个挖掘机,很多强悍的功能都发展不起来。
套用一句老话——云计算和大数据,两者是相辅相成的。
大数据和物联网(5G)
第二个问题,大数据和物联网有什么关系?
这个问题我觉得大家应该能够很快想明白,前面其实也提到了。
物联网就是“物与物互相连接的互联网”。物联网的感知层,产生了海量的数据,将会极大地促进大数据的发展。
同样,大数据应用也发挥了物联网的价值,反向刺激了物联网的使用需求。越来越多的企业,发觉能够通过物联网大数据获得价值,就会愿意投资建设物联网。
其实这个问题也可以进一步延伸为“大数据和5G之间的关系”。
即将到来的5G,通过提升连接速率,提升了“人联网”的感知,也促进了人类主动创造数据。
另一方面,它更多是为“物联网”服务的。包括低延时、海量终端连接等,都是物联网场景的需求。
5G刺激物联网的发展,而物联网刺激大数据的发展。所有通信基础设施的强大,都是为大数据崛起铺平道路。
大数据的产业链
接下来再说说大数据的产业链。
大数据的产业链,和大数据的处理流程是紧密相关的。简单来说,就是生产数据、聚合数据、分析数据、消费数据。
每个环节,都有相应的角色玩家。如下图:
从目前的情况来看,国外厂商在大数据产业占据了较大的份额,尤其是上游领域,基本上都是国外企业。国内IT企业相比而言,存在较大的差距。
大数据相关重点领域及企业(技术)
大数据的挑战
说了那么多大数据的好话,并不代表大数据是完美的。
大数据也面临着很多挑战。
除了数据管理技术难度之外,大数据的最大挑战,就是安全。
数据是资产,也是隐私。没有人愿意自己的隐私被暴露,所以,人们对自己的隐私保护越来越重视。政府也在不断加强对公民隐私权的保护,出台了很多法律。
欧盟在2018年出台了有史以来最严厉的GDPR(《一般数据保护法案》),把网络数据保护上升到前所未有的高度
在这种情况下,企业获取用户数据,就需要慎重考虑,是否符合伦理和法律。一旦违法,将付出极为沉重的代价。
此外,即使企业合法获取数据,也要担心是否会被恶意攻击和窃取。这里面的风险也是不容忽视的。
除了安全之外,大数据还要面临能耗等方面的问题。
换言之,如果不能很好地保护和利用手里的大数据,那么它就是一个烫手的山芋,有还不如没有。
好啦,洋洋洒洒写了这么多,相信大家已经对大数据有了初步的了解。
后续,我们还会介绍大数据的关键框架和技术栈,包括大家非常关心的Hadoop、Spark、HDFS、MapReduce等概念。
- FIN -
2021年智领云全新视频直播栏目《大咖驾到》重磅来袭!
每月一期,我们特别邀请到国内外各知名企业CTO、CEO、技术专家等“大咖”人物做客直播间。第一期的特别神秘大咖究竟是谁?欢迎大家扫码入群,观看直播。
更多精彩推荐
技术人必备数据能力:30分钟打通企业发展任督二脉 | 文末抽奖
能支持8个明星并发出轨的微博,却扛不住华晨宇和张碧晨的1个孩子
DataOps:数据中台的必备底座
中台为什么做不好?拆系统“烟囱”容易,拆思维“烟囱”难!
硅谷最凶猛的云计算“独角兽”:Snowflake造富神话 能否在中国复制?
????更多智领云科技详细内容,点击“阅读原文”