scikit-learn 中文文档-使用 scikit-learn 介绍机器学习-scikit-learn教程|ApacheCN

中文文档: http://sklearn.apachecn.org/cn/stable/tutorial/basic/tutorial.html

英文文档: http://sklearn.apachecn.org/en/stable/tutorial/basic/tutorial.html

官方文档: http://scikit-learn.org/stable/

GitHub: https://github.com/apachecn/scikit-learn-doc-zh(觉得不错麻烦给个 Star,我们一直在努力)

贡献者: https://github.com/apachecn/scikit-learn-doc-zh#贡献者

关于我们: http://www.apachecn.org/organization/209.html




使用 scikit-learn 介绍机器学习

内容提要

在本节中,我们介绍一些在使用 scikit-learn 过程中用到的 机器学习 词汇,并且给出一些例子阐释它们。

机器学习:问题设置

一般来说,一个学习问题通常会考虑一系列 n 个 样本 数据,然后尝试预测未知数据的属性。 如果每个样本是 多个属性的数据 (比如说是一个多维记录),就说它有许多“属性”,或称 features(特征) 。

我们可以将学习问题分为几大类:

  • 监督学习 , 其中数据带有一个附加属性,即我们想要预测的结果值( 点击此处 转到 scikit-learn 监督学习页面)。这个问题可以是:

    • 分类 : 样本属于两个或更多个类,我们想从已经标记的数据中学习如何预测未标记数据的类别。 分类问题的一个例子是手写数字识别,其目的是将每个输入向量分配给有限数目的离散类别之一。 我们通常把分类视作监督学习的一个离散形式(区别于连续形式),从有限的类别中,给每个样本贴上正确的标签。
    • 回归: 如果期望的输出由一个或多个连续变量组成,则该任务称为 回归. 回归问题的一个例子是预测鲑鱼的长度是其年龄和体重的函数。
  • 无监督学习, 其中训练数据由没有任何相应目标值的一组输入向量x组成。这种问题的目标可能是在数据中发现彼此类似的示例所聚成的组,这种问题称为 聚类 , 或者,确定输入空间内的数据分布,称为 密度估计 ,又或从高维数据投影数据空间缩小到二维或三维以进行 可视化 (点击此处 转到 scikit-learn 无监督学习页面)。

训练集和测试集

机器学习是从数据的属性中学习,并将它们应用到新数据的过程。 这就是为什么机器学习中评估算法的普遍实践是把数据分割成 训练集 (我们从中学习数据的属性)和 测试集 (我们测试这些性质)。

加载示例数据集

scikit-learn 提供了一些标准数据集,例如 用于分类的 iris 和 digits 数据集 和 波士顿房价回归数据集 .

在下文中,我们从我们的 shell 启动一个 Python 解释器,然后加载 iris 和 digits 数据集。我们的符号约定是 $ 表示 shell 提示符,而 >>> 表示 Python 解释器提示符:

$ python
>>> from sklearn import datasets
>>> iris = datasets.load_iris()
>>> digits = datasets.load_digits()

数据集是一个类似字典的对象,它保存有关数据的所有数据和一些元数据。 该数据存储在 .data 成员中,它是 n_samples, n_features 数组。 在监督问题的情况下,一个或多个响应变量存储在 .target 成员中。 有关不同数据集的更多详细信息,请参见 专用数据集部分 .

例如,在数字数据集的情况下,digits.data 使我们能够得到一些用于分类的样本特征:

>>>
>>> print(digits.data)  
[[  0.   0.   5. ...,   0.   0.   0.]
 [  0.   0.   0. ...,  10.   0.   0.]
 [  0.   0.   0. ...,  16.   9.   0.]
 ...,
 [  0.   0.   1. ...,   6.   0.   0.]
 [  0.   0.   2. ...,  12.   0.   0.]
 [  0.   0.  10. ...,  12.   1.   0.]]

并且 digits.target 表示了数据集内每个数字的真实类别,也就是我们期望从每个手写数字图像中学得的相应的数字标记:

>>>
>>> digits.target
array([0, 1, 2, ..., 8, 9, 8])

数据数组的形状

数据总是 2D 数组,形状 (n_samples, n_features) ,尽管原始数据可能具有不同的形状。 在数字的情况下,每个原始样本是形状 (8, 8) 的图像,可以使用以下方式访问:

>>>
>>> digits.images[0]
array([[  0.,   0.,   5.,  13.,   9.,   1.,   0.,   0.],
       [  0.,   0.,  13.,  15.,  10.,  15.,   5.,   0.],
       [  0.,   3.,  15.,   2.,   0.,  11.,   8.,   0.],
       [  0.,   4.,  12.,   0.,   0.,   8.,   8.,   0.],
       [  0.,   5.,   8.,   0.,   0.,   9.,   8.,   0.],
       [  0.,   4.,  11.,   0.,   1.,  12.,   7.,   0.],
       [  0.,   2.,  14.,   5.,  10.,  12.,   0.,   0.],
       [  0.,   0.,   6.,  13.,  10.,   0.,   0.,   0.]])

该 数据集上的简单示例 说明了如何从原始数据开始调整,形成可以在 scikit-learn 中使用的数据。

从外部数据集加载

要从外部数据集加载,请参阅 加载外部数据集.

学习和预测

在数字数据集的情况下,任务是给出图像来预测其表示的数字。 我们给出了 10 个可能类(数字 0 到 9)中的每一个的样本,我们在这些类上 拟合 一个 估计器 ,以便能够 预测 未知的样本所属的类。

在 scikit-learn 中,分类的估计器是一个 Python 对象,它实现了 fit(X, y) 和 predict(T) 等方法。

估计器的一个例子类 sklearn.svm.SVC ,实现了 支持向量分类 。 估计器的构造函数以相应模型的参数为参数,但目前我们将把估计器视为即可:

>>>
>>> from sklearn import svm
>>> clf = svm.SVC(gamma=0.001, C=100.)

选择模型的参数

在这个例子中,我们手动设置 gamma 值。不过,通过使用 网格搜索 及 交叉验证 等工具,可以自动找到参数的良好值。

我们把我们的估计器实例命名为 clf ,因为它是一个分类器(classifier)。我们需要它适应模型,也就是说,要它从模型中*学习*。 这是通过将我们的训练集传递给 fit 方法来完成的。作为一个训练集,让我们使用数据集中除最后一张以外的所有图像。 我们用 [:-1] Python 语法选择这个训练集,它产生一个包含 digits.data 中除最后一个条目(entry)之外的所有条目的新数组

>>>
>>> clf.fit(digits.data[:-1], digits.target[:-1])  
SVC(C=100.0, cache_size=200, class_weight=None, coef0=0.0,
  decision_function_shape='ovr', degree=3, gamma=0.001, kernel='rbf',
  max_iter=-1, probability=False, random_state=None, shrinking=True,
  tol=0.001, verbose=False)

现在你可以预测新的值,特别是我们可以向分类器询问 digits 数据集中最后一个图像(没有用来训练的一条实例)的数字是什么:

>>>
>>> clf.predict(digits.data[-1:])
array([8])

相应的图像如下:

正如你所看到的,这是一项具有挑战性的任务:图像分辨率差。你是否认同这个分类?

这个分类问题的一个完整例子可以作为一个例子来运行和学习: 识别手写数字。 Recognizing hand-written digits.

模型持久化

可以通过使用 Python 的内置持久化模块(即 pickle )将模型保存:

>>>
>>> from sklearn import svm
>>> from sklearn import datasets
>>> clf = svm.SVC()
>>> iris = datasets.load_iris()
>>> X, y = iris.data, iris.target
>>> clf.fit(X, y)  
SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,
  decision_function_shape='ovr', degree=3, gamma='auto', kernel='rbf',
  max_iter=-1, probability=False, random_state=None, shrinking=True,
  tol=0.001, verbose=False)

>>> import pickle
>>> s = pickle.dumps(clf)
>>> clf2 = pickle.loads(s)
>>> clf2.predict(X[0:1])
array([0])
>>> y[0]
0

在scikit的具体情况下,使用 joblib 替换 pickle( joblib.dump & joblib.load )可能会更有趣,这对大数据更有效,但只能序列化 (pickle) 到磁盘而不是字符串:

>>>
>>> from sklearn.externals import joblib
>>> joblib.dump(clf, 'filename.pkl') 

之后,您可以加载已保存的模型(可能在另一个 Python 进程中):

>>>
>>> clf = joblib.load('filename.pkl') 

Warning

   

joblib.dump 以及 joblib.load 函数也接受 file-like(类文件) 对象而不是文件名。有关 Joblib 的数据持久化的更多信息,请 点击此处 。

请注意,pickle 有一些安全性和维护性问题。有关使用 scikit-learn 的模型持久化的更多详细信息,请参阅 模型持久化 部分。

规定

scikit-learn 估计器遵循某些规则,使其行为更可预测。

类型转换

除非特别指定,输入将被转换为 float64

>>>
>>> import numpy as np
>>> from sklearn import random_projection

>>> rng = np.random.RandomState(0)
>>> X = rng.rand(10, 2000)
>>> X = np.array(X, dtype='float32')
>>> X.dtype
dtype('float32')

>>> transformer = random_projection.GaussianRandomProjection()
>>> X_new = transformer.fit_transform(X)
>>> X_new.dtype
dtype('float64')

在这个例子中,X 原本是 float32 ,被 fit_transform(X) 被转换成 float64 。

回归目标被转换为 float64 ,但分类目标维持不变:

>>>
>>> from sklearn import datasets
>>> from sklearn.svm import SVC
>>> iris = datasets.load_iris()
>>> clf = SVC()
>>> clf.fit(iris.data, iris.target)  
SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,
  decision_function_shape='ovr', degree=3, gamma='auto', kernel='rbf',
  max_iter=-1, probability=False, random_state=None, shrinking=True,
  tol=0.001, verbose=False)

>>> list(clf.predict(iris.data[:3]))
[0, 0, 0]

>>> clf.fit(iris.data, iris.target_names[iris.target])  
SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,
  decision_function_shape='ovr', degree=3, gamma='auto', kernel='rbf',
  max_iter=-1, probability=False, random_state=None, shrinking=True,
  tol=0.001, verbose=False)

>>> list(clf.predict(iris.data[:3]))  
['setosa', 'setosa', 'setosa']

这里,第一个 predict() 返回一个整数数组,因为在 fit 中使用了 iris.target (一个整数数组)。 第二个 predict() 返回一个字符串数组,因为 iris.target_names 是一个字符串数组。

再次训练和更新参数

估计器的超参数可以通过 sklearn.pipeline.Pipeline.set_params 方法在实例化之后进行更新。 调用 fit() 多次将覆盖以前的 fit() 所学到的参数:

>>>
>>> import numpy as np
>>> from sklearn.svm import SVC

>>> rng = np.random.RandomState(0)
>>> X = rng.rand(100, 10)
>>> y = rng.binomial(1, 0.5, 100)
>>> X_test = rng.rand(5, 10)

>>> clf = SVC()
>>> clf.set_params(kernel='linear').fit(X, y)  
SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,
  decision_function_shape='ovr', degree=3, gamma='auto', kernel='linear',
  max_iter=-1, probability=False, random_state=None, shrinking=True,
  tol=0.001, verbose=False)
>>> clf.predict(X_test)
array([1, 0, 1, 1, 0])

>>> clf.set_params(kernel='rbf').fit(X, y)  
SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,
  decision_function_shape='ovr', degree=3, gamma='auto', kernel='rbf',
  max_iter=-1, probability=False, random_state=None, shrinking=True,
  tol=0.001, verbose=False)
>>> clf.predict(X_test)
array([0, 0, 0, 1, 0])

在这里,估计器被 SVC() 构造之后,默认内核 rbf 首先被改变到 linear ,然后改回到 rbf 重新训练估计器并进行第二次预测。

多分类与多标签拟合

当使用 多类分类器 时,执行的学习和预测任务取决于参与训练的目标数据的格式:

>>>
>>> from sklearn.svm import SVC
>>> from sklearn.multiclass import OneVsRestClassifier
>>> from sklearn.preprocessing import LabelBinarizer

>>> X = [[1, 2], [2, 4], [4, 5], [3, 2], [3, 1]]
>>> y = [0, 0, 1, 1, 2]

>>> classif = OneVsRestClassifier(estimator=SVC(random_state=0))
>>> classif.fit(X, y).predict(X)
array([0, 0, 1, 1, 2])

在上述情况下,分类器被使用一个含有多个标签的一维数组训练,因此 predict() 方法提供相应的多类别预测。分类器也可以通过二进制表示的的标签的二维数组来训练:

>>>
>>> y = LabelBinarizer().fit_transform(y)
>>> classif.fit(X, y).predict(X)
array([[1, 0, 0],
       [1, 0, 0],
       [0, 1, 0],
       [0, 0, 0],
       [0, 0, 0]])

这里,使用 LabelBinarizer 使目标向量 y 被转化成二维数组的标签表示。在这种情况下, predict() 返回一个表示相应多重标签预测的 2d 矩阵。

请注意,第四个和第五个实例返回全零向量,表明它们不能匹配用来训练中的目标标签中的任意一个。使用多分类输出,类似地可以为一个实例分配多个标签:

>> from sklearn.preprocessing import MultiLabelBinarizer
>> y = [[0, 1], [0, 2], [1, 3], [0, 2, 3], [2, 4]]
>> y = MultiLabelBinarizer().fit_transform(y)
>> classif.fit(X, y).predict(X)
array([[1, 1, 0, 0, 0],
       [1, 0, 1, 0, 0],
       [0, 1, 0, 1, 0],
       [1, 0, 1, 1, 0],
       [0, 0, 1, 0, 1]])

在这种情况下,用来训练分类器的多个向量被赋予多个标记, MultiLabelBinarizer 被用来二进制化多个标签的二维数组,使之用来训练。 predict() 函数返回带有多个标记的二维数组作为每个实例的结果。




中文文档: http://sklearn.apachecn.org/cn/stable/tutorial/basic/tutorial.html

英文文档: http://sklearn.apachecn.org/en/stable/tutorial/basic/tutorial.html

官方文档: http://scikit-learn.org/stable/

GitHub: https://github.com/apachecn/scikit-learn-doc-zh(觉得不错麻烦给个 Star,我们一直在努力)

贡献者: https://github.com/apachecn/scikit-learn-doc-zh#贡献者

关于我们: http://www.apachecn.org/organization/209.html

有兴趣的们也可以和我们一起来维护,持续更新中 。。。

机器学习交流群: 629470233


你可能感兴趣的:(sklearn,机器学习,中文文档,scikit-learn,机器学习,使用,scikit-learn,介绍机器)