算法-五大常用算法:分支限界算法

分支限界算法:类似于回溯法,也是一种在问题的解空间树T上搜索问题解的算法。但在一般情况下,分支限界法与回溯法的求解目标不同。回溯法的求解目标是找出解空间树中满足约束条件的所有解,而分支限界法的求解目标则是满足约束条件的一个解,或是从满足约束条件的解中找出使某一目标函数值达到极大或极小的解,即在某种意义下的最优解。

分支限界法的基本思想是对有约束条件的最优化问题的所有可行解(数目有限)空间进行搜索。该算法在具体执行时,把全部可行的解空间不断分割为越来越小的自己(成为分支),并为每个自己内的解的值计算一个下界或上界(成为界定)。

在每次分支后,对凡是界限超出已知可行解值的那些子集不再做进一步分支。这样,解的许多子集(即搜索树上的许多节点)就可以不必考虑了,从而缩小了搜索范围。这一过程一直进行到找出可行解为止,该可行解的值不大于任务子集的界限,因此这种算法一般可以求得最优解。

将问题分支为子问题,并对这些子问题定界的步骤称为分支定界法。




参考资料:
五大常用算法学习笔记

你可能感兴趣的:(算法,分支限界算法)