在日常开发中,需要延时任务的时候,往往会用到handler.postDelay()的方法,那么一起来看看它的内部实现原理吧。
//Handler.java
public final boolean postDelayed(Runnable r, long delayMillis)
{
return sendMessageDelayed(getPostMessage(r), delayMillis);
}
在内部调用了sendMessageDelayed这个方法,而这个方法的返回值是布尔型,返回true表示这条消息已经被成功的放到了消息队列,返回false表示这条消息添加失败,在来看sendMessageDelayed方法的内部实现
//Handler.java
public final boolean sendMessageDelayed(Message msg, long delayMillis)
{
if (delayMillis < 0) {
delayMillis = 0;
}
return sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis);
}
首先对时间做了一个格式化,并且在时间上做了一个当前时间和我们传入的延时时间的和,而不是只使用延时时间,接着直接返回sendMessageAtTime这个方法,这个方法的返回值表示的意思和上面一样,是一系列的传递,再来看sendMessageAtTime方法
//Handler.java
public boolean sendMessageAtTime(Message msg, long uptimeMillis) {
MessageQueue queue = mQueue;
if (queue == null) {
RuntimeException e = new RuntimeException(
this + " sendMessageAtTime() called with no mQueue");
Log.w("Looper", e.getMessage(), e);
return false;
}
return enqueueMessage(queue, msg, uptimeMillis);
}
这个方法对消息队列做了一个判空,然后接着调用enqueueMessage方法
//handler.java
private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {
msg.target = this;
if (mAsynchronous) {
msg.setAsynchronous(true);
}
return queue.enqueueMessage(msg, uptimeMillis);
}
通过这一串方法的调用,实际上也就是将一条消息插入到了消息队列里。在来看具体的插入过程
MessageQueue.java
boolean enqueueMessage(Message msg, long when) {
if (msg.target == null) {
throw new IllegalArgumentException("Message must have a target.");
}
if (msg.isInUse()) {
throw new IllegalStateException(msg + " This message is already in use.");
}
synchronized (this) {
if (mQuitting) {
IllegalStateException e = new IllegalStateException(
msg.target + " sending message to a Handler on a dead thread");
Log.w(TAG, e.getMessage(), e);
msg.recycle();
return false;
}
msg.markInUse();
msg.when = when;
Message p = mMessages;
boolean needWake;
if (p == null || when == 0 || when < p.when) {
// New head, wake up the event queue if blocked.
msg.next = p;
mMessages = msg;
needWake = mBlocked;
} else {
// Inserted within the middle of the queue. Usually we don't have to wake
// up the event queue unless there is a barrier at the head of the queue
// and the message is the earliest asynchronous message in the queue.
needWake = mBlocked && p.target == null && msg.isAsynchronous();
Message prev;
for (;;) {
prev = p;
p = p.next;
if (p == null || when < p.when) {
break;
}
if (needWake && p.isAsynchronous()) {
needWake = false;
}
}
msg.next = p; // invariant: p == prev.next
prev.next = msg;
}
// We can assume mPtr != 0 because mQuitting is false.
if (needWake) { //1
nativeWake(mPtr);
}
}
return true;
}
可以用伪代码简化上面源码的逻辑
if (p == null || when == 0 || when < p.when) {
// New head, wake up the event queue if blocked.
//当延时时间小于当前链表头到消息的执行时间
//插入的消息变为消息头
} else {
//延时比链表头的时间要长
//用for循环寻找合适的时间节点
}
也就是说,延时消息会和当前消息队列里的消息头的执行时间对比,如果比头时间靠前,则会成为新的消息头,否则就依次遍历,寻找合适的位置插入延时消息。
注释1处的判断也需要额外关注一下,通过needWake,找到了mBlocked这个变量
// Indicates whether next() is blocked waiting in pollOnce() with a non-zero timeout.
private boolean mBlocked;
这个变量是表明在执行next()
方法是否在等待一个有延时的消息而被阻塞。
//MessageQueue.java
Message next() {
// Return here if the message loop has already quit and been disposed.
// This can happen if the application tries to restart a looper after quit
// which is not supported.
final long ptr = mPtr;
if (ptr == 0) {
return null;
}
int pendingIdleHandlerCount = -1; // -1 only during first iteration
int nextPollTimeoutMillis = 0;
for (;;) {
if (nextPollTimeoutMillis != 0) {
Binder.flushPendingCommands();
}
nativePollOnce(ptr, nextPollTimeoutMillis);
synchronized (this) {
// Try to retrieve the next message. Return if found.
final long now = SystemClock.uptimeMillis();
Message prevMsg = null;
Message msg = mMessages;
if (msg != null && msg.target == null) {
// Stalled by a barrier. Find the next asynchronous message in the queue.
do {
prevMsg = msg;
msg = msg.next;
} while (msg != null && !msg.isAsynchronous());
}
if (msg != null) {
if (now < msg.when) {
// Next message is not ready. Set a timeout to wake up when it is ready.
nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
} else {
// Got a message.
mBlocked = false;
if (prevMsg != null) {
prevMsg.next = msg.next;
} else {
mMessages = msg.next;
}
msg.next = null;
if (DEBUG) Log.v(TAG, "Returning message: " + msg);
msg.markInUse();
return msg;
}
} else {
// No more messages.
nextPollTimeoutMillis = -1;
}
// Process the quit message now that all pending messages have been handled.
if (mQuitting) {
dispose();
return null;
}
// If first time idle, then get the number of idlers to run.
// Idle handles only run if the queue is empty or if the first message
// in the queue (possibly a barrier) is due to be handled in the future.
if (pendingIdleHandlerCount < 0
&& (mMessages == null || now < mMessages.when)) {
pendingIdleHandlerCount = mIdleHandlers.size();
}
if (pendingIdleHandlerCount <= 0) {
// No idle handlers to run. Loop and wait some more.
mBlocked = true;
continue;
}
if (mPendingIdleHandlers == null) {
mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)];
}
mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers);
}
// Run the idle handlers.
// We only ever reach this code block during the first iteration.
for (int i = 0; i < pendingIdleHandlerCount; i++) {
final IdleHandler idler = mPendingIdleHandlers[i];
mPendingIdleHandlers[i] = null; // release the reference to the handler
boolean keep = false;
try {
keep = idler.queueIdle();
} catch (Throwable t) {
Log.wtf(TAG, "IdleHandler threw exception", t);
}
if (!keep) {
synchronized (this) {
mIdleHandlers.remove(idler);
}
}
}
// Reset the idle handler count to 0 so we do not run them again.
pendingIdleHandlerCount = 0;
// While calling an idle handler, a new message could have been delivered
// so go back and look again for a pending message without waiting.
nextPollTimeoutMillis = 0;
}
}
通过这段代码,可以看出以下几点
1.nativePollOnce(ptr,nextPollTimeoutMills)
会根据nextPollTimeoutMills的值确定是否休眠,如果nextPollTimeoutMills的>0,则next方法会在这里休眠等待唤醒,这也解释了为什么主线程里的死循环为什么不会卡死,在主线程的MessageQueue没有消息时,便阻塞在loop的queue.next()中的nativePollOnce()方法里,此时主线程会释放CPU资源进入休眠状态,直到下个消息到达或者有事务发生,通过往pipe管道写端写入数据来唤醒主线程工作。这里采用的epoll机制,是一种IO多路复用机制,可以同时监控多个描述符,当某个描述符就绪(读或写就绪),则立刻通知相应程序进行读或写操作,本质同步I/O,即读写是阻塞的。所以说,主线程大多数时候都是处于休眠状态,并不会消耗大量CPU资。
2.从消息头去消息会和当前时间做对比,如果需要延时,则计算延时时间,并赋值给nextPollTimeoutMills
3.如果不需要延时,则正常取出消息头,并将mBlocked设置为false
4.如果idleHandler数量为0,则将mBlocked设置为true。
最后,需要注意的是,Handler的Delay不一定会在when的时间执行
(1)在Loop.loop()中是顺序处理消息,如果前一个消息处理耗时较长,完成之后已经超过了when,消息不可能在when时间点被处理。
(2)即使when的时间点没有被处理其他消息所占用,线程也有可能被调度失去cpu时间片。
(3)在等待时间点when的过程中有可能入队处理时间更早的消息,会被优先处理,又增加了(1)的可能性。
所以由上述三点可知,Handler提供的指定处理时间的api诸如postDelayed()/postAtTime()/sendMessageDelayed()/sendMessageAtTime(),只能保证在指定时间之前不被执行,不能保证在指定时间点被执行。