spark 宽窄依赖

宽依赖与窄依赖

  • 窄依赖是指父RDD的每个分区只被子RDD的一个分区所使用,子RDD分区通常对应常数个父RDD分区(O(1),与数据规模无关)
  • ShuffleDependency和Hadoop MapReduce中Shuffle的数据依赖相同
  • 相应的,宽依赖是指父RDD的每个分区都可能被多个子RDD分区所使用,子RDD分区通常对应所有的父RDD分区(O(n),与数据规模有关)
  • NarrowDependency指某个具体的Rdd,其区分partitoin a 最多被子RDD中的一个分区partitoin b 依赖。此种情况只有Map任务,是不需要发生Shuffle过程的,窄依赖由分为1:1,1:n

宽依赖和窄依赖如下图所示:

宽依赖和窄依赖示例

相比于宽依赖,窄依赖对优化很有利 ,主要基于以下两点:

  1. 宽依赖往往对应着shuffle操作,需要在运行过程中将同一个父RDD的分区传入到不同的子RDD分区中,中间可能涉及多个节点之间的数据传输;而窄依赖的每个父RDD的分区只会传入到一个子RDD分区中,通常可以在一个节点内完成转换。

  2. 当RDD分区丢失时(某个节点故障),spark会对数据进行重算。

    1. 对于窄依赖,由于父RDD的一个分区只对应一个子RDD分区,这样只需要重算和子RDD分区对应的父RDD分区即可,所以这个重算对数据的利用率是100%的;
    2. 对于宽依赖,重算的父RDD分区对应多个子RDD分区,这样实际上父RDD 中只有一部分的数据是被用于恢复这个丢失的子RDD分区的,另一部分对应子RDD的其它未丢失分区,这就造成了多余的计算;更一般的,宽依赖中子RDD分区通常来自多个父RDD分区,极端情况下,所有的父RDD分区都要进行重新计算。
    3. 如下图所示,b1分区丢失,则需要重新计算a1,a2和a3,这就产生了冗余计算(a1,a2,a3中对应b2的数据)。

      宽依赖

spark 宽窄依赖_第1张图片




【来自@若泽大数据】

你可能感兴趣的:(spark 宽窄依赖)