1. 版本 对应的版本
mysql |
flink |
kafka |
hudi |
5.7.20-log |
fink 13.5 |
2.0.0.3 |
0.10 |
2. 采用架构
3. flink sql 的 mysql cdc 表
3.1 mysql 表结构
CREATE TABLE `Flink_cdc` (
`id` bigint(64) NOT NULL AUTO_INCREMENT,
`name` varchar(64) DEFAULT NULL,
`age` int(20) DEFAULT NULL,
`birthday` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP,
`ts` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP,
PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=69 DEFAULT CHARSET=utf8mb4;
3.2 flink sql mysql cdc 表
Flink SQL> CREATE TABLE source_mysql (
> id BIGINT PRIMARY KEY NOT ENFORCED,
> name STRING,
> age INT,
> birthday TIMESTAMP(3),
> ts TIMESTAMP(3)
> ) WITH (
> 'connector' = 'mysql-cdc',
> 'hostname' = '192.168.1.162',
> 'port' = '3306',
> 'username' = 'root',
> 'password' = '123456',
> 'server-time-zone' = 'Asia/Shanghai',
> 'debezium.snapshot.mode' = 'initial',
> 'database-name' = 'wudldb',
> 'table-name' = 'Flink_cdc'
> );
>
[INFO] Execute statement succeed.
3.2 新建hudi 表 并且插入数据
Flink SQL> CREATE TABLE flink_cdc_sink_hudi_hive_wudl(
> id bigint ,
> name string,
> age int,
> birthday TIMESTAMP(3),
> ts TIMESTAMP(3),
> part STRING,
> primary key(id) not enforced
> )
> PARTITIONED BY (part)
> with(
> 'connector'='hudi',
> 'path'= 'hdfs://192.168.1.161:8020/flink_cdc_sink_hudi_hive_wudl',
> 'table.type'= 'MERGE_ON_READ',
> 'hoodie.datasource.write.recordkey.field'= 'id',
> 'write.precombine.field'= 'ts',
> 'write.tasks'= '1',
> 'write.rate.limit'= '2000',
> 'compaction.tasks'= '1',
> 'compaction.async.enabled'= 'true',
> 'compaction.trigger.strategy'= 'num_commits',
> 'compaction.delta_commits'= '1',
> 'changelog.enabled'= 'true',
> 'read.streaming.enabled'= 'true',
> 'read.streaming.check-interval'= '3',
> 'hive_sync.enable'= 'true',
> 'hive_sync.mode'= 'hms',
> 'hive_sync.metastore.uris'= 'thrift://node02.com:9083',
> 'hive_sync.jdbc_url'= 'jdbc:hive2://node02.com:10000',
> 'hive_sync.table'= 'flink_cdc_sink_hudi_hive_wudl',
> 'hive_sync.db'= 'db_hive',
> 'hive_sync.username'= 'root',
> 'hive_sync.password'= '123456',
> 'hive_sync.support_timestamp'= 'true'
> );
[INFO] Execute statement succeed.
3.3 将cdc 的表数据插入到hudi 表中
Flink SQL> INSERT INTO flink_cdc_sink_hudi_hive_wudl SELECT id, name,age,birthday, ts, DATE_FORMAT(birthday, 'yyyyMMdd') as part FROM source_mysql ;
[INFO] Submitting SQL update statement to the cluster...
[INFO] SQL update statement has been successfully submitted to the cluster:
Job ID: 8a6e4869c43e57d57357c1767e7c2b38
4. 查看数据
5. 批处理 从hudi 表输出到 kakfa
5.1 创建hudi 表
Flink SQL> CREATE TABLE hudi_flink_kafka_source (
> id bigint ,
> name string,
> age int,
> birthday TIMESTAMP(3),
> ts TIMESTAMP(3),
> part STRING,
> primary key(id) not enforced
> )
> PARTITIONED BY (part)
> WITH (
> 'connector' = 'hudi',
> 'path'= 'hdfs://192.168.1.161:8020/flink_cdc_sink_hudi_hive20220905',
> 'table.type' = 'MERGE_ON_READ',
> 'write.operation' = 'upsert',
> 'hoodie.datasource.write.recordkey.field'= 'id',
> 'write.precombine.field' = 'ts',
> 'write.tasks'= '1',
> 'compaction.tasks' = '1',
> 'compaction.async.enabled' = 'true',
> 'compaction.trigger.strategy' = 'num_commits',
> 'compaction.delta_commits' = '1'
> );
>
5.2 创建kafka 表
Flink SQL> CREATE TABLE kakfa_sink6 (
> id bigint ,
> name string,
> age int,
> birthday TIMESTAMP(3),
> ts TIMESTAMP(3)
> ) WITH (
> 'connector' = 'kafka',
> 'topic' = 'wudl2022flink03',
> 'properties.bootstrap.servers' = '192.168.1.161:6667',
> 'properties.group.id' = 'wudl20220905',
> 'format' = 'json',
> 'json.fail-on-missing-field' = 'false',
> 'json.ignore-parse-errors' = 'true'
> );
[INFO] Execute statement succeed.
Flink SQL> INSERT INTO kakfa_sink6 SELECT id, name,age,birthday, ts FROM hudi_flink_kafka_source ;
[INFO] Submitting SQL update statement to the cluster...
[INFO] SQL update statement has been successfully submitted to the cluster:
Job ID: 005ee1b8011319d235c6485c2abb3efb
6. 查看表结构数据
7. 时间转化函数
7.1 flink sql LOCALTIMESTAMP 获取系统时间
Flink SQL> select DATE_FORMAT(LOCALTIMESTAMP, 'yyyy-MM-dd HH:mm:ss');
+----+--------------------------------+
| op | EXPR$0 |
+----+--------------------------------+
| +I | 2022-09-05 19:19:42 |
+----+--------------------------------+
Received a total of 1 row
# TO_TIMESTAMP 时间的转化
Flink SQL>
Flink SQL> select TO_TIMESTAMP(DATE_FORMAT(LOCALTIMESTAMP, 'yyyy-MM-dd HH:mm:ss'));
+----+-------------------------+
| op | EXPR$0 |
+----+-------------------------+
| +I | 2022-09-05 19:20:30.000 |
+----+-------------------------+
Received a total of 1 row
Flink SQL>