这里是蓝桥杯历年的题目专栏,将会陆续更新将往年真题以及解答发布出来,欢迎各位小伙伴关注我吖,你们的点赞关注就是给我最好的动力!!!
每天更新一届真题解析,敬请期待。
蓝桥杯历年真题及详细解答
题目描述
有一堆煤球,堆成三角棱锥形。具体:
第一层放1个,
第二层3个(排列成三角形),
第三层6个(排列成三角形),
第四层10个(排列成三角形),…
如果一共有100层,共有多少个煤球?
请填表示煤球总数目的数字。
注意:你提交的应该是一个整数,不要填写任何多余的内容或说明性文字。
题目分析
该题目是一个模拟题,首先找出他的规律
第一层 1
第二层 1+2
第三层 1+2+3
第四层 1+2+3+4
可以看出他的规律了,就是依次加
最后的要求是求全部的煤球数
题目代码
#include
using namespace std;
int main()
{
int sum = 0,temp = 0;
//temp表示每层的数目
for(int i = 1; i <=100; i++)
{
temp += i;
sum+= temp;
}
cout << sum << endl;
return 0;
}
题目答案
171700
题目描述
某君从某年开始每年都举办一次生日party,并且每次都要吹熄与年龄相同根数的蜡烛。
现在算起来,他一共吹熄了236根蜡烛。
请问,他从多少岁开始过生日party的?
请填写他开始过生日party的年龄数。
注意:你提交的应该是一个整数,不要填写任何多余的内容或说明性文字。
题目分析
该题目暴力求出,两层循环,第一层表示从多少岁过生日,第二层表示当前多少岁了。满足条件就跳出循环。
题目代码
#include
using namespace std;
int main()
{
int sum = 0;
//表示第几岁开始过生日
for(int i = 1; i < 99; i++)
{
sum = 0;
//当前第几岁
for(int j=i; j < 99; j++)
{
sum += j;
if(sum==236)
{
cout << i << endl;
}
}
}
return 0;
}
题目答案
26
题目描述
B DEF
A + — + ——— = 10
C GHI
(如果显示有问题,可以参见【图1.jpg】)
这个算式中AI代表19的数字,不同的字母代表不同的数字。
比如:
6+8/3+952/714 就是一种解法,
5+3/1+972/486 是另一种解法。
这个算式一共有多少种解法?
注意:你提交应该是个整数,不要填写任何多余的内容或说明性文字。
题目分析
暴力循环,直接用next_permutation()
题目代码
#include
#include
#include
using namespace std;
int main()
{
int num[9] = {1,2,3,4,5,6,7,8,9};
int cnt = 0;
do
{
float a = num[0];
float b = num[1]*1.0/num[2];
float c = (num[3]*100.0+num[4]*10+num[5]) / (num[6]*100+num[7]*10+num[8]);
if(fabs(a+b+c-10)<=1e-5)
{
cnt++;
}
}while(next_permutation(num,num+9));
cout << cnt <<endl;
return 0;
}
题目答案
29
题目描述
排序在各种场合经常被用到。
快速排序是十分常用的高效率的算法。
其思想是:先选一个“标尺”,
用它把整个队列过一遍筛子,
以保证:其左边的元素都不大于它,其右边的元素都不小于它。
这样,排序问题就被分割为两个子区间。
再分别对子区间排序就可以了。
下面的代码是一种实现,请分析并填写划线部分缺少的代码。
#include
void swap(int a[], int i, int j)
{
int t = a[i];
a[i] = a[j];
a[j] = t;
}
int partition(int a[], int p, int r)
{
int i = p;
int j = r + 1;
int x = a[p];
while(1)
{
while(i<r && a[++i]<x);
while(a[--j]>x);
if(i>=j) break;
swap(a,i,j);
}
______________________;//填空
return j;
}
void quicksort(int a[], int p, int r)
{
if(p<r)
{
int q = partition(a,p,r);
quicksort(a,p,q-1);
quicksort(a,q+1,r);
}
}
int main()
{
int i;
int a[] = {5,13,6,24,2,8,19,27,6,12,1,17};
int N = 12;
quicksort(a, 0, N-1);
for(i=0; i<N; i++)
printf("%d ", a[i]);
printf("\n");
return 0;
}
注意:只填写缺少的内容,不要书写任何题面已有代码或说明性文字。
题目分析
快速排序算法是十大经典算法之一,填空部分的函数是用于切割,表示比当前的数小的放左边,比当前数大的放右边,然后依次对左边和右边进行排序。填空部分就是在分完之后,将当前的数进行交换位置。
题目代码
#include
void swap(int a[], int i, int j)
{
int t = a[i];
a[i] = a[j];
a[j] = t;
}
int partition(int a[], int p, int r)
{
int i = p;
int j = r + 1;
int x = a[p];
while(1)
{
while(i<r && a[++i]<x);
while(a[--j]>x);
if(i>=j) break;
swap(a,i,j);
}
swap(a,p,j);//填空
return j;
}
void quicksort(int a[], int p, int r)
{
if(p<r)
{
int q = partition(a,p,r);
quicksort(a,p,q-1);
quicksort(a,q+1,r);
}
}
int main()
{
int i;
int a[] = {5,13,6,24,2,8,19,27,6,12,1,17};
int N = 12;
quicksort(a, 0, N-1);
for(i=0; i<N; i++)
printf("%d ", a[i]);
printf("\n");
return 0;
}
题目答案
swap(a,p,j);
题目描述
X星球要派出一个5人组成的观察团前往W星。
其中:
A国最多可以派出4人。
B国最多可以派出2人。
C国最多可以派出2人。
…
那么最终派往W星的观察团会有多少种国别的不同组合呢?
下面的程序解决了这个问题。
数组a[] 中既是每个国家可以派出的最多的名额。
程序执行结果为:
DEFFF
CEFFF
CDFFF
CDEFF
CCFFF
CCEFF
CCDFF
CCDEF
BEFFF
BDFFF
BDEFF
BCFFF
BCEFF
BCDFF
BCDEF
…
(以下省略,总共101行)
#include
#define N 6
#define M 5
#define BUF 1024
void f(int a[], int k, int m, char b[])
{
int i,j;
if(k==N)
{
b[M] = 0;
if(m==0) printf("%s\n",b);
return;
}
for(i=0; i<=a[k]; i++)
{
for(j=0; j<i; j++)
b[M-m+j] = k+'A';
______________________; //填空位置
}
}
int main()
{
int a[N] = {4,2,2,1,1,3};
char b[BUF];
f(a,0,M,b);
return 0;
}
仔细阅读代码,填写划线部分缺少的内容。
注意:不要填写任何已有内容或说明性文字。
题目分析
首先理解f函数的参数表示意义,其中k表示队伍编号,m表示还需要多少人,对于这种题,判断出是递归,每进行操作一个队伍,所以递归的时候k+1,而m减少相应的人数。
题目代码
#include
#define N 6
#define M 5
#define BUF 1024
void f(int a[], int k, int m, char b[])
{
int i,j;
if(k==N)
{
b[M] = 0;
if(m==0) printf("%s\n",b);
return;
}
for(i=0; i<=a[k]; i++)
{
for(j=0; j<i; j++)
b[M-m+j] = k+'A';
f(a,k+1,m-j,b);; //填空位置
}
}
int main()
{
int a[N] = {4,2,2,1,1,3};
char b[BUF];
f(a,0,M,b);
return 0;
}
题目答案
f(a,k+1,m-j,b);
题目描述
如下的10个格子
(如果显示有问题,也可以参看【图1.jpg】)
填入0~9的数字。要求:连续的两个数字不能相邻。
(左右、上下、对角都算相邻)
一共有多少种可能的填数方案?
请填写表示方案数目的整数。
注意:你提交的应该是一个整数,不要填写任何多余的内容或说明性文字。
题目描述
如【图1.jpg】, 有12张连在一起的12生肖的邮票。
现在你要从中剪下5张来,要求必须是连着的。
(仅仅连接一个角不算相连)
比如,【图2.jpg】,【图3.jpg】中,粉红色所示部分就是合格的剪取。
请你计算,一共有多少种不同的剪取方法。
请填写表示方案数目的整数。
注意:你提交的应该是一个整数,不要填写任何多余的内容或说明性文字。
题目分析
题目代码
题目描述
四平方和定理,又称为拉格朗日定理:
每个正整数都可以表示为至多4个正整数的平方和。
如果把0包括进去,就正好可以表示为4个数的平方和。比如:
5 = 0^2 + 0^2 + 1^2 + 2^2
7 = 1^2 + 1^2 + 1^2 + 2^2
(^符号表示乘方的意思)
对于一个给定的正整数,可能存在多种平方和的表示法。
要求你对4个数排序:
0 <= a <= b <= c <= d
并对所有的可能表示法按 a,b,c,d 为联合主键升序排列,最后输出第一个表示法
程序输入为一个正整数N (N<5000000)
要求输出4个非负整数,按从小到大排序,中间用空格分开
例如,输入:
5
则程序应该输出:
0 0 1 2
再例如,输入:
12
则程序应该输出:
0 2 2 2
再例如,输入:
773535
则程序应该输出:
1 1 267 838
资源约定:
峰值内存消耗 < 256M
CPU消耗 < 3000ms
题目分析
题目代码
题目描述
有N个瓶子,编号 1 ~ N,放在架子上。
比如有5个瓶子:
2 1 3 5 4
要求每次拿起2个瓶子,交换它们的位置。
经过若干次后,使得瓶子的序号为:
1 2 3 4 5
对于这么简单的情况,显然,至少需要交换2次就可以复位。
如果瓶子更多呢?你可以通过编程来解决。
输入格式为两行:
第一行: 一个正整数N(N<10000), 表示瓶子的数目
第二行:N个正整数,用空格分开,表示瓶子目前的排列情况。
输出数据为一行一个正整数,表示至少交换多少次,才能完成排序。
例如,输入:
5
3 1 2 5 4
程序应该输出:
3
再例如,输入:
5
5 4 3 2 1
程序应该输出:
2
资源约定:
峰值内存消耗 < 256M
CPU消耗 < 1000ms
题目分析
题目代码
题目描述
X星球的某个大奖赛设了M级奖励。每个级别的奖金是一个正整数。
并且,相邻的两个级别间的比例是个固定值。
也就是说:所有级别的奖金数构成了一个等比数列。比如:
16,24,36,54
其等比值为:3/2
现在,我们随机调查了一些获奖者的奖金数。
请你据此推算可能的最大的等比值。
输入格式:
第一行为数字N,表示接下的一行包含N个正整数
第二行N个正整数Xi(Xi<1 000 000 000 000),用空格分开。每个整数表示调查到的某人的奖金数额
要求输出:
一个形如A/B的分数,要求A、B互质。表示可能的最大比例系数
测试数据保证了输入格式正确,并且最大比例是存在的。
例如,输入:
3
1250 200 32
程序应该输出:
25/4
再例如,输入:
4
3125 32 32 200
程序应该输出:
5/2
再例如,输入:
3
549755813888 524288 2
程序应该输出:
4/1
资源约定:
峰值内存消耗 < 256M
CPU消耗 < 3000ms
题目分析
题目代码