- 多模态大模型常见问题
cv2016_DL
多模态大模型人工智能语言模型自然语言处理机器学习transformer
1.视觉编码器和LLM连接时,使用BLIP2中Q-Former那种复杂的Adaptor好还是LLaVA中简单的MLP好,说说各自的优缺点?Q-Former(BLIP2):优点:Q-Former通过查询机制有效融合了视觉和语言特征,使得模型能够更好地处理视觉-语言任务,尤其是在多模态推理任务中表现优秀。缺点:Q-Former结构较为复杂,计算开销较大。MLP(LLaVA):优点:MLP比较简单,计算
- 360 最新Android面试题及参考答案
大模型大数据攻城狮
android安卓面经安卓面试dex结构hook技术Binderaosp
一个activity只能有一个进程么【对进程的理解】在Android中,一个Activity并不只能有一个进程。进程是操作系统进行资源分配和调度的一个独立单位。从原理上来说,Android系统允许开发者通过在AndroidManifest.xml文件中的标签设置android:process属性,来指定Activity运行在不同的进程中。例如,如果有一个对性能要求很高的多媒体播放Activity,
- 端到端的NLP框架(Haystack)
deepdata_cn
NLP自然语言处理人工智能
Haystack是一个端到端的NLP框架,专门用于构建基于文档的问答系统,是实现RAG的理想选择。它提供了数据预处理、文档存储、检索和生成等一系列组件,支持多种语言模型和检索器。提供可视化界面,方便用户进行配置和调试;支持多模态数据,可处理文本、图像等多种类型的数据;具有可扩展性,可根据需求添加自定义组件。2020年在自然语言处理技术快速发展,对高效、易用且灵活的端到端NLP框架需求日益增长的背景
- YOLO算法全面改进指南(二)
niuTaylor
YOLO改进YOLO算法
以下是为YOLO系列算法设计的系统性改进框架,结合前沿技术与多领域创新,提供可支持高水平论文发表的详细改进思路。本方案整合了轻量化设计、多模态融合、动态特征优化等创新点,并给出可验证的实验方向。一、多模态提示驱动的开放场景检测系统1.核心创新三模态提示机制:文本提示编码器:基于RepRTA(可重参数化区域文本对齐)构建轻量级文本编码网络,将自然语言描述映射为128维语义向量。视觉提示编码器:采用S
- WPF从初学者到专家:实战项目经验分享与总结
xcLeigh
WPF从入门到精通wpfC#
WPF从初学者到专家:实战项目经验分享与总结一、前言二、WPF基础概念与入门2.1什么是WPF2.2XAML基础2.3数据绑定基础三、第一个WPF项目:简单的待办事项列表3.1项目需求分析3.2项目搭建与界面设计3.3业务逻辑实现四、中级项目:音乐播放器应用4.1项目需求分析4.2界面设计与布局4.3多媒体功能实现五、高级项目:企业级办公自动化平台(回顾与进阶)5.1项目回顾与优化5.2引入MVV
- Tinyflow AI 工作流编排框架 v0.0.7 发布
自不量力的A同学
人工智能
目前没有关于TinyflowAI工作流编排框架v0.0.7发布的相关具体信息。Tinyflow是一个轻量的AI智能体流程编排解决方案,其设计理念是“简单、灵活、无侵入性”。它基于WebComponent开发,前端支持与React、Vue等任何框架集成,后端支持Java、Node.js、Python等语言,助力传统应用快速AI转型。该框架代码库轻量,学习成本低,能轻松应对简单任务编排和复杂多模态推理
- 向量检索、检索增强生成(RAG)、大语言模型及相关系统架构——典型面试问题及简要答案
快撑死的鱼
算法工程师宝典(面试学习最新技术必备)语言模型系统架构面试
1.什么是向量检索?它与传统基于关键字的检索相比有什么不同?答案要点:向量检索是将文本、图像、音频等数据映射为向量,在高维向量空间中基于相似度或距离进行搜索。与传统基于关键字的检索(如倒排索引)相比,向量检索更关注“语义”或“特征”,能找出语义上相似但未必包含相同关键词的内容。向量检索非常适合多模态场景(例如“以图搜图”)或自然语言问答(同义词、上下文关联等)。2.什么是检索增强生成(RAG)?核
- HTML 图像与多媒体元素:拓展学习边界的进度记录(一)
计算机毕设定制辅导-无忧学长
#HTMLhtml学习php
开篇:学习启程在前端开发的广袤领域中,HTML作为构建网页的基石,其重要性不言而喻。而HTML图像与多媒体元素,就像是为这座基石添上了绚丽的色彩与灵动的音符,赋予网页更加丰富的表现力和交互性。作为一名热衷于探索前端技术的博主,我深知掌握这些元素对于提升网页开发能力的关键作用。于是,我踏上了深入学习HTML图像与多媒体元素的征程,并决定将学习过程中的点滴记录下来,与大家一同分享。希望通过这篇学习进度
- PyTorch深度学习框架60天进阶学习计划 - 第28天:多模态模型实践(二)
凡人的AI工具箱
深度学习pytorch学习AI编程人工智能python
PyTorch深度学习框架60天进阶学习计划-第28天:多模态模型实践(二)5.跨模态检索系统应用场景5.1图文匹配系统的实际应用应用领域具体场景优势电子商务商品图像搜索、视觉购物用户可以上传图片查找相似商品或使用文本描述查找商品智能媒体内容推荐、图片库搜索通过内容的语义理解提供更精准的推荐和搜索社交网络基于内容的帖子推荐理解用户兴趣,提供更相关的内容推荐教育技术多模态教学资源检索教师和学生可以更
- PyTorch深度学习框架60天进阶学习计划 - 第28天:多模态模型实践(一)
凡人的AI工具箱
深度学习pytorch学习AI编程人工智能python
PyTorch深度学习框架60天进阶学习计划-第28天:多模态模型实践(一)引言:跨越感知的边界欢迎来到我们的PyTorch学习旅程第28天!今天我们将步入AI世界中最激动人心的领域之一:多模态学习。想象一下,如果你的模型既能"看"又能"读",并且能够理解图像与文字之间的联系,这将为我们打开怎样的可能性?今天我们将专注于构建图文匹配系统,学习如何使用CLIP(ContrastiveLanguage
- vr中的计算机知识,VR技术基本常识
淡庸
vr中的计算机知识
虚拟现实技术是仿真技术的一个重要方向是仿真技术与计算机图形学人机接口技术多媒体技术传感技术网络技术等多种技术的集合是一门富有挑战性的交叉技术前沿学科和研究领域。虚拟现实技术(VR)主要包括模拟环境、感知、自然技能和传感设备等方面。模拟环境是由计算机生成的、实时动态的三维立体逼真图像。感知是指理想的VR应该具有一切人所具有的感知。除计算机图形技术所生成的视觉感知外,还有听觉、触觉、力觉、运动等感知,
- 实测 Gemini 2.0 Flash 图像生成:多模态 AI 的创作力边界
python
近日,Google发布了Gemini2.0Flash的实验性图像生成功能(Gemini2.0Flash(ImageGeneration)Experimental)。我也第一时间体验了这一功能,再次感受到AI技术对传统图像处理工具的颠覆性冲击。本文从主要功能、安装方法、应用场景,并通过实际测试展示其能力,希望帮助大家更好地了解和使用这一工具。引言Gemini2.0Flash的实验性图像生成功能于20
- gralloc usage flags
Damon_X
gralloc
下面这些示例主要说明了grallocusageflags在图像处理和多媒体应用中如何影响性能和正确性。让我们逐个详细分析每个问题的根因和修复方案,并深入解析gralloc标志对缓存管理和数据流的影响。✅Example1:长曝光快照耗时异常问题描述症状:长曝光快照(longexposuresnapshot)在某些内存优化后,拍摄时间异常变长。根因:第三方算法在多个快照帧上执行,耗时约1.2秒。Buf
- 算力融合创新与多场景应用生态构建
智能计算研究中心
其他
内容概要算力作为数字经济的核心驱动力,正经历从单一计算范式向融合架构的跨越式演进。随着异构计算、光子计算等底层技术的突破,算力资源逐步形成跨架构协同、多模态联动的智能供给体系,支撑工业互联网、医疗影像、智能安防等场景实现效率跃升。与此同时,量子计算与神经形态计算的前沿探索,正在重塑科学计算与实时决策的技术边界。建议行业关注算力可扩展性与安全标准的协同设计,通过动态调度算法与分布式架构优化,构建弹性
- DeepSeek混合专家架构赋能智能创作
智能计算研究中心
其他
内容概要在人工智能技术加速迭代的当下,DeepSeek混合专家架构(MixtureofExperts)通过670亿参数的动态路由机制,实现了多模态处理的范式突破。该架构将视觉语言理解、多语言语义解析与深度学习算法深度融合,构建出覆盖文本生成、代码编写、学术研究等场景的立体化能力矩阵。其核心优势体现在三个维度:精准化内容生产——通过智能选题、文献综述自动生成等功能,将学术论文写作效率提升40%以上;
- 基于Python的金融领域AI训练数据抓取实战(完整技术解析)
海拥✘
python金融人工智能
项目背景与需求分析场景描述为训练一个覆盖全球金融市场的多模态大语言模型(LLM),需实时采集以下数据:全球30+主要证券交易所(NYSE、NASDAQ、LSE、TSE等)的上市公司公告企业财报PDF文档及结构化数据社交媒体舆情数据(Twitter、StockTwits)新闻媒体分析(Reuters、Bloomberg)技术挑战地理封锁:部分交易所(如日本TSE)仅允许本国IP访问历史数据动态反爬:
- 效果媲美GPT4V的多模态大型语言模型MiniCPM-V-2_6详细介绍
我就是全世界
语言模型人工智能自然语言处理
MiniCPM-V-2.6概述1.1模型背景MiniCPM-V-2.6是由nuoan开发的一款达到GPT-4V级别的多模态大型语言模型(MLLM)。该模型专为手机上的单图像、多图像和视频处理设计,旨在提供高效、准确的多模态内容理解与生成能力。随着移动设备的普及和计算能力的提升,用户对于在移动端进行复杂图像和视频处理的需求日益增长。MiniCPM-V-2.6的推出,正是为了满足这一需求,提供了一种在
- 开源模型应用落地-qwen模型小试-调用Qwen2-7B-Instruct-进阶篇(十二)
开源技术探险家
开源模型-实际应用落地#深度学习自然语言处理语言模型
一、前言经过前五篇“qwen模型小试”文章的学习,我们已经熟练掌握qwen大模型的使用。然而,就在前几天阿里云又发布了Qwen2版本。无论是语言模型还是多模态模型,均在大规模多语言和多模态数据上进行预训练,并通过高质量数据进行后期微调以贴近人类偏好。本文将介绍如何使用Transformers库进行模型推理(相较于qwen1系列,使用方式上有较大的调整),现在,我们赶紧跟上脚步,去体验一下新版本模型
- AI让奥运报道一键跨越,见证新华社新科技
云计算视频云音视频
媒体智能与巴黎奥运的一场邂逅。随着巴黎奥运会开幕式为全世界掀起一场文艺浪潮,塞纳河畔也从浪漫艺术的盛宴,转向体育竞技的击攘。让全世界不可错过巴黎前方的每刻高光,更需要一场多媒体技术的迎赶革新。于是,我们看到另一场媒体技术舞台,浮出塞纳河的水面。新华社作为国际奥委会认可的唯一非西方的国际通讯社,此次启用由阿里云和山东广电信通联合打造的重大报道共享系统,以AI领先应用,助力巴黎奥运报道。图示:新华社在
- 图生视频技术的发展与展望:从技术突破到未来图景
Liudef06
StableDiffusion音视频人工智能深度学习stablediffusion
一、技术发展现状图生视频(Image-to-VideoGeneration)是生成式人工智能(AIGC)的重要分支,其核心是通过单张或多张静态图像生成动态视频序列。近年来,随着深度学习、多模态融合和计算硬件的进步,图生视频技术经历了从基础研究到商业落地的快速演进。早期探索与GAN的奠基早期图生视频技术主要基于生成对抗网络(GAN),通过对抗训练生成低分辨率的视频片段。例如,DeepMind的DVD
- 【论文阅读】MMedPO: 用临床感知多模态偏好优化调整医学视觉语言模型
勤奋的小笼包
论文阅读语言模型人工智能自然语言处理chatgpt
MMedPO:用临床感知多模态偏好优化调整医学视觉语言模型1.背景2.核心问题:3.方法:3.实验结果与优势4.技术贡献与意义5.结论MMedPO:AligningMedicalVision-LanguageModelswithClinical-AwareMultimodalPreferenceOptimizationMMedPO:用临床感知多模态偏好优化调整医学视觉语言模型gitgub:地址1.
- 复旦:过程奖励优化多模态推理
大模型任我行
大模型-模型训练人工智能自然语言处理语言模型论文笔记
标题:VisualPRM:AnEffectiveProcessRewardModelforMultimodalReasoning来源:arXiv,2503.10291摘要我们引入了VisualPRM,这是一种具有8B参数的高级多模态过程奖励模型(PRM),它通过Best-of-N(BoN)评估策略提高了现有多模态大型语言模型(MLLM)在不同模型尺度和族之间的推理能力。具体来说,我们的模型提高了三
- 火山引擎宋慎义:RTC产品需多样化才能良性发展
LiveVideoStack_
音视频RTC视频云音视频webrtc
编者按:自大流行以来,我们见证了多媒体技术走向巅峰,RTC伴随着生活的方方面面,不可分割。一时间,多媒体圈空前热闹,资本涌入,人才争夺空前火爆,跳槽很多时候意味着薪资数倍增长。然而好景不长,2021年在线教育“团灭”,导致许多技术服务商现金流紧张。另一方面,RTC服务过分同质化,价格战不可避免。许多小公司无力支撑,或被收购,或被迫裁员转型退出战场,整个行业处在焦虑的煎熬中。剩者为王,也许真正的赢家
- 21.11 《ChatGLM3-6B+Gradio工业级落地:多模态交互+60%性能优化,手把手实现生产部署》
少林码僧
AI大模型应用实战专栏人工智能gpt语言模型性能优化交互
《ChatGLM3-6B+Gradio工业级落地:多模态交互+60%性能优化,手把手实现生产部署》关键词:ChatGLM3-6B应用开发,Gradio界面集成,模型交互优化,Web服务容器化,多模态输入支持使用Gradio赋能ChatGLM3-6B图形化界面通过Gradio实现大模型服务的可视化交互,是生产级AI应用落地的关键环节。本节将深入解析如何构建适配ChatGLM3-6B的工业级交互界面。
- 大众文艺杂志社大众文艺杂志大众文艺编辑部2025年第3期目录
QQ296078736
人工智能
公共文化服务研究提高基层群众音乐鉴赏水平的策略研究罗婉琳;1-3文艺评论《增广贤文》:深入剖析其中的人学智慧姚志清;4-6当代战争视阈下近20年军旅戏剧军事文化观的嬗变研究(2000~2023年)邱远望;7-9从奥威尔的《射象》看分裂的自我与身份认同何玉蔚;10-12南宋都市笔记中的临安园林及其美学意义张凯歌;13-15文博与数字化研究数字时代与媒介史视域下的多模态图书馆系统及新质书香社会建设鹿钦
- ffmpeg+ubuntu16.04编译ffmpeg库
小gpt&
QT+FFMPEG实战ffmpeglinux
个人使用环境:ubuntudesktop16.04+ffmpeg4.2.1以下的库进行完整编译ffmpeg介绍FFmpeg是一个开源的多媒体框架,广泛用于处理音频、视频、字幕等多媒体数据。它包含了丰富的工具和库,能够进行音视频的编解码、转码、流媒体处理、滤镜应用等操作。FFmpeg是许多多媒体应用程序和工具的核心引擎,功能强大且灵活,支持几乎所有常见的音视频格式。FFmpeg的主要组成部分ffmp
- 3DMAX点云算法:实现毫米级BIM模型偏差检测(附完整代码)
夏末之花
人工智能
摘要本文基于激光雷达点云数据与BIM模型的高精度对齐技术,提出一种融合动态体素化与多模态特征匹配的偏差检测方法。通过点云预处理、语义分割、模型配准及差异分析,最终实现建筑构件毫米级偏差的可视化检测。文中提供关键代码实现,涵盖点云处理、特征提取与深度学习模型搭建。一、核心算法流程点云预处理与特征增强去噪与下采样:采用统计滤波与体素网格下采样,去除离群点并降低数据量。语义分割:基于PointNet++
- MMScan数据集:首个最大的多模态3D场景数据集,包含层次化的语言标注
数据集
2024-10-24,由上海人工智能实验室联合多所高校创建了MMScan,这是迄今为止最大的多模态3D场景数据集,包含了层次化的语言标注。数据集的建立,不仅推动了3D场景理解的研究进展,还为训练和评估多模态3D感知模型提供了宝贵的资源。一、研究背景:随着大型语言模型(LLMs)的兴起和与其他数据模态的融合,多模态3D感知因其与物理世界的连接而受到越来越多的关注,并取得了快速进展。然而,现有的数据集
- Qt多媒体模块QMediaPlayer
qq_19605587
qt开发语言
Qt项目中.pro文件,.h文件和.cpp文件各自的作用:.pro文件:这是Qt项目文件,它包含了项目需要的所有信息,例如项目中包含哪些源文件、需要哪些库以及项目的其他配置信息等。可以把它理解为项目的配置和说明文件。.h文件:这是头文件,也叫做头文件。它们包含了类的声明和一些你希望在多个源文件中共享的函数、变量的声明。在这些头文件中,常常包括一些#define指令(用于定义常量)和其他类型的配置信
- QT多媒体播放器类:QMediaPlayer
程序先锋
QT界面开发qt开发语言
QMediaPlayer是QtMultimedia模块中的核心类,用于播放音频和视频媒体文件。它支持本地文件、网络流媒体以及实时数据源,具备播放控制、状态管理、元数据访问等功能。QMediaPlayer的基本用法可能包括设置媒体源、控制播放(播放、暂停、停止)、调整音量、监听播放状态变化等。1.信号(Signals)信号用于通知外部对象播放器状态、媒体属性和错误事件的变化。(1)媒体改变voidm
- 面向对象面向过程
3213213333332132
java
面向对象:把要完成的一件事,通过对象间的协作实现。
面向过程:把要完成的一件事,通过循序依次调用各个模块实现。
我把大象装进冰箱这件事为例,用面向对象和面向过程实现,都是用java代码完成。
1、面向对象
package bigDemo.ObjectOriented;
/**
* 大象类
*
* @Description
* @author FuJian
- Java Hotspot: Remove the Permanent Generation
bookjovi
HotSpot
openjdk上关于hotspot将移除永久带的描述非常详细,http://openjdk.java.net/jeps/122
JEP 122: Remove the Permanent Generation
Author Jon Masamitsu
Organization Oracle
Created 2010/8/15
Updated 2011/
- 正则表达式向前查找向后查找,环绕或零宽断言
dcj3sjt126com
正则表达式
向前查找和向后查找
1. 向前查找:根据要匹配的字符序列后面存在一个特定的字符序列(肯定式向前查找)或不存在一个特定的序列(否定式向前查找)来决定是否匹配。.NET将向前查找称之为零宽度向前查找断言。
对于向前查找,出现在指定项之后的字符序列不会被正则表达式引擎返回。
2. 向后查找:一个要匹配的字符序列前面有或者没有指定的
- BaseDao
171815164
seda
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.SQLException;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
public class BaseDao {
public Conn
- Ant标签详解--Java命令
g21121
Java命令
这一篇主要介绍与java相关标签的使用 终于开始重头戏了,Java部分是我们关注的重点也是项目中用处最多的部分。
1
- [简单]代码片段_电梯数字排列
53873039oycg
代码
今天看电梯数字排列是9 18 26这样呈倒N排列的,写了个类似的打印例子,如下:
import java.util.Arrays;
public class 电梯数字排列_S3_Test {
public static void main(S
- Hessian原理
云端月影
hessian原理
Hessian 原理分析
一. 远程通讯协议的基本原理
网络通信需要做的就是将流从一台计算机传输到另外一台计算机,基于传输协议和网络 IO 来实现,其中传输协议比较出名的有 http 、 tcp 、 udp 等等, http 、 tcp 、 udp 都是在基于 Socket 概念上为某类应用场景而扩展出的传输协
- 区分Activity的四种加载模式----以及Intent的setFlags
aijuans
android
在多Activity开发中,有可能是自己应用之间的Activity跳转,或者夹带其他应用的可复用Activity。可能会希望跳转到原来某个Activity实例,而不是产生大量重复的Activity。
这需要为Activity配置特定的加载模式,而不是使用默认的加载模式。 加载模式分类及在哪里配置
Activity有四种加载模式:
standard
singleTop
- hibernate几个核心API及其查询分析
antonyup_2006
html.netHibernatexml配置管理
(一) org.hibernate.cfg.Configuration类
读取配置文件并创建唯一的SessionFactory对象.(一般,程序初始化hibernate时创建.)
Configuration co
- PL/SQL的流程控制
百合不是茶
oraclePL/SQL编程循环控制
PL/SQL也是一门高级语言,所以流程控制是必须要有的,oracle数据库的pl/sql比sqlserver数据库要难,很多pl/sql中有的sqlserver里面没有
流程控制;
分支语句 if 条件 then 结果 else 结果 end if ;
条件语句 case when 条件 then 结果;
循环语句 loop
- 强大的Mockito测试框架
bijian1013
mockito单元测试
一.自动生成Mock类 在需要Mock的属性上标记@Mock注解,然后@RunWith中配置Mockito的TestRunner或者在setUp()方法中显示调用MockitoAnnotations.initMocks(this);生成Mock类即可。二.自动注入Mock类到被测试类 &nbs
- 精通Oracle10编程SQL(11)开发子程序
bijian1013
oracle数据库plsql
/*
*开发子程序
*/
--子程序目是指被命名的PL/SQL块,这种块可以带有参数,可以在不同应用程序中多次调用
--PL/SQL有两种类型的子程序:过程和函数
--开发过程
--建立过程:不带任何参数
CREATE OR REPLACE PROCEDURE out_time
IS
BEGIN
DBMS_OUTPUT.put_line(systimestamp);
E
- 【EhCache一】EhCache版Hello World
bit1129
Hello world
本篇是EhCache系列的第一篇,总体介绍使用EhCache缓存进行CRUD的API的基本使用,更细节的内容包括EhCache源代码和设计、实现原理在接下来的文章中进行介绍
环境准备
1.新建Maven项目
2.添加EhCache的Maven依赖
<dependency>
<groupId>ne
- 学习EJB3基础知识笔记
白糖_
beanHibernatejbosswebserviceejb
最近项目进入系统测试阶段,全赖袁大虾领导有力,保持一周零bug记录,这也让自己腾出不少时间补充知识。花了两天时间把“传智播客EJB3.0”看完了,EJB基本的知识也有些了解,在这记录下EJB的部分知识,以供自己以后复习使用。
EJB是sun的服务器端组件模型,最大的用处是部署分布式应用程序。EJB (Enterprise JavaBean)是J2EE的一部分,定义了一个用于开发基
- angular.bootstrap
boyitech
AngularJSAngularJS APIangular中文api
angular.bootstrap
描述:
手动初始化angular。
这个函数会自动检测创建的module有没有被加载多次,如果有则会在浏览器的控制台打出警告日志,并且不会再次加载。这样可以避免在程序运行过程中许多奇怪的问题发生。
使用方法: angular .
- java-谷歌面试题-给定一个固定长度的数组,将递增整数序列写入这个数组。当写到数组尾部时,返回数组开始重新写,并覆盖先前写过的数
bylijinnan
java
public class SearchInShiftedArray {
/**
* 题目:给定一个固定长度的数组,将递增整数序列写入这个数组。当写到数组尾部时,返回数组开始重新写,并覆盖先前写过的数。
* 请在这个特殊数组中找出给定的整数。
* 解答:
* 其实就是“旋转数组”。旋转数组的最小元素见http://bylijinnan.iteye.com/bl
- 天使还是魔鬼?都是我们制造
ducklsl
生活教育情感
----------------------------剧透请原谅,有兴趣的朋友可以自己看看电影,互相讨论哦!!!
从厦门回来的动车上,无意中瞟到了书中推荐的几部关于儿童的电影。当然,这几部电影可能会另大家失望,并不是类似小鬼当家的电影,而是关于“坏小孩”的电影!
自己挑了两部先看了看,但是发现看完之后,心里久久不能平
- [机器智能与生物]研究生物智能的问题
comsci
生物
我想,人的神经网络和苍蝇的神经网络,并没有本质的区别...就是大规模拓扑系统和中小规模拓扑分析的区别....
但是,如果去研究活体人类的神经网络和脑系统,可能会受到一些法律和道德方面的限制,而且研究结果也不一定可靠,那么希望从事生物神经网络研究的朋友,不如把
- 获取Android Device的信息
dai_lm
android
String phoneInfo = "PRODUCT: " + android.os.Build.PRODUCT;
phoneInfo += ", CPU_ABI: " + android.os.Build.CPU_ABI;
phoneInfo += ", TAGS: " + android.os.Build.TAGS;
ph
- 最佳字符串匹配算法(Damerau-Levenshtein距离算法)的Java实现
datamachine
java算法字符串匹配
原文:http://www.javacodegeeks.com/2013/11/java-implementation-of-optimal-string-alignment.html------------------------------------------------------------------------------------------------------------
- 小学5年级英语单词背诵第一课
dcj3sjt126com
englishword
long 长的
show 给...看,出示
mouth 口,嘴
write 写
use 用,使用
take 拿,带来
hand 手
clever 聪明的
often 经常
wash 洗
slow 慢的
house 房子
water 水
clean 清洁的
supper 晚餐
out 在外
face 脸,
- macvim的使用实战
dcj3sjt126com
macvim
macvim用的是mac里面的vim, 只不过是一个GUI的APP, 相当于一个壳
1. 下载macvim
https://code.google.com/p/macvim/
2. 了解macvim
:h vim的使用帮助信息
:h macvim
- java二分法查找
蕃薯耀
java二分法查找二分法java二分法
java二分法查找
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年6月23日 11:40:03 星期二
http:/
- Spring Cache注解+Memcached
hanqunfeng
springmemcached
Spring3.1 Cache注解
依赖jar包:
<!-- simple-spring-memcached -->
<dependency>
<groupId>com.google.code.simple-spring-memcached</groupId>
<artifactId>simple-s
- apache commons io包快速入门
jackyrong
apache commons
原文参考
http://www.javacodegeeks.com/2014/10/apache-commons-io-tutorial.html
Apache Commons IO 包绝对是好东西,地址在http://commons.apache.org/proper/commons-io/,下面用例子分别介绍:
1) 工具类
2
- 如何学习编程
lampcy
java编程C++c
首先,我想说一下学习思想.学编程其实跟网络游戏有着类似的效果.开始的时候,你会对那些代码,函数等产生很大的兴趣,尤其是刚接触编程的人,刚学习第一种语言的人.可是,当你一步步深入的时候,你会发现你没有了以前那种斗志.就好象你在玩韩国泡菜网游似的,玩到一定程度,每天就是练级练级,完全是一个想冲到高级别的意志力在支持着你.而学编程就更难了,学了两个月后,总是觉得你好象全都学会了,却又什么都做不了,又没有
- 架构师之spring-----spring3.0新特性的bean加载控制@DependsOn和@Lazy
nannan408
Spring3
1.前言。
如题。
2.描述。
@DependsOn用于强制初始化其他Bean。可以修饰Bean类或方法,使用该Annotation时可以指定一个字符串数组作为参数,每个数组元素对应于一个强制初始化的Bean。
@DependsOn({"steelAxe","abc"})
@Comp
- Spring4+quartz2的配置和代码方式调度
Everyday都不同
代码配置spring4quartz2.x定时任务
前言:这些天简直被quartz虐哭。。因为quartz 2.x版本相比quartz1.x版本的API改动太多,所以,只好自己去查阅底层API……
quartz定时任务必须搞清楚几个概念:
JobDetail——处理类
Trigger——触发器,指定触发时间,必须要有JobDetail属性,即触发对象
Scheduler——调度器,组织处理类和触发器,配置方式一般只需指定触发
- Hibernate入门
tntxia
Hibernate
前言
使用面向对象的语言和关系型的数据库,开发起来很繁琐,费时。由于现在流行的数据库都不面向对象。Hibernate 是一个Java的ORM(Object/Relational Mapping)解决方案。
Hibernte不仅关心把Java对象对应到数据库的表中,而且提供了请求和检索的方法。简化了手工进行JDBC操作的流程。
如
- Math类
xiaoxing598
Math
一、Java中的数字(Math)类是final类,不可继承。
1、常数 PI:double圆周率 E:double自然对数
2、截取(注意方法的返回类型) double ceil(double d) 返回不小于d的最小整数 double floor(double d) 返回不大于d的整最大数 int round(float f) 返回四舍五入后的整数 long round