- MiniMind
亚伯拉罕·黄肯
大模型人工智能
数据集分类:tokenizer训练集:这个数据集用于训练分词器(tokenizer),是文本处理中的一个重要步骤。它可以帮助模型更好地理解文本数据的结构。Pretrain数据:这是用于预训练模型的数据集,它可以帮助模型学习语言的基本结构和特征。SFT数据:SFT(SupervisedFine-Tuning)数据集,用于监督式微调,可以提高模型在特定任务上的性能。DPO数据1和DPO数据2:这两个数
- 【集成学习】:Stacking原理以及Python代码实现
Geeksongs
机器学习python机器学习深度学习人工智能算法
Stacking集成学习在各类机器学习竞赛当中得到了广泛的应用,尤其是在结构化的机器学习竞赛当中表现非常好。今天我们就来介绍下stacking这个在机器学习模型融合当中的大杀器的原理。并在博文的后面附有相关代码实现。总体来说,stacking集成算法主要是一种基于“标签”的学习,有以下的特点:用法:模型利用交叉验证,对训练集进行预测,从而实现二次学习优点:可以结合不同的模型缺点:增加了时间开销,容
- 使用Seaborn绘制小提琴图
CodeWG
python开发语言
使用Seaborn绘制小提琴图在数据分析与可视化中,小提琴图是一种常用的图表类型。它能够展示数据的分布情况,同时还能显示中位数、四分位数和异常值等统计指标。在Python中,我们可以使用Seaborn库来轻松地绘制小提琴图。下面就来详细介绍一下如何使用Seaborn来创建小提琴图。首先,我们需要导入必要的库和数据集。这里我们使用Seaborn自带的数据集tips作为例子。importseaborn
- PyTorch基础知识讲解(一)完整训练流程示例
苏雨流丰
机器学习pytorch人工智能python机器学习深度学习
文章目录Tutorial1.数据处理2.网络模型定义3.损失函数、模型优化、模型训练、模型评价4.模型保存、模型加载、模型推理Tutorial大多数机器学习工作流程涉及处理数据、创建模型、优化模型参数和保存训练好的模型。本教程向你介绍一个用PyTorch实现的完整的ML工作流程,并提供链接来了解这些概念中的每一个。我们将使用FashionMNIST数据集来训练一个神经网络,预测输入图像是否属于以下
- Java常用集合与映射的线程安全问题深度解析
QQ828929QQ
java安全开发语言
Java常用集合与映射的线程安全问题深度解析一、线程安全基础认知在并发编程环境下,当多个线程同时操作同一集合对象时,若未采取同步措施,可能导致以下典型问题:数据竞争:多个线程同时修改数据导致结果不可预测状态不一致:部分线程看到集合的中间状态内存可见性:线程本地缓存与主内存数据不同步死循环风险:特定操作引发无限循环(如JDK7的HashMap扩容)二、典型非线程安全集合问题分析1.ArrayList
- 《交互式线性代数》
wblong_cs
矩阵论线性代数矩阵
《交互式线性代数》*InteractiveLinearAlgebra*由DanMargalit和JosephRabinoff编写,是一本聚焦线性代数的教材。本书旨在教授线性代数的核心概念、方法及其应用,通过代数与几何相结合的方式,帮助读者深入理解线性代数的本质,培养解决实际问题的能力。核心内容线性方程组求解代数方法:介绍线性方程组的基本概念,如解的定义、解集等。通过消元法和行变换,将方程组转化为增
- 深度学习与目标检测系列(三) 本文约(4万字) | 全面解读复现AlexNet | Pytorch |
小酒馆燃着灯
深度学习目标检测pytorchAlexNet人工智能
文章目录解读Abstract-摘要翻译精读主要内容1.Introduction—前言翻译精读主要内容:本文主要贡献:2.TheDataset-数据集翻译精读主要内容:ImageNet简介:图像处理方法:3.TheArchitecture—网络结构3.1ReLUNonlinearity—非线性激活函数ReLU翻译精读传统方法及不足本文改进方法本文的改进结果3.2TrainingonMultipleG
- 建模中的特征衍生技巧总结(含各类常用衍生函数)
爱学习的uu
pandas机器学习人工智能数据挖掘决策树python算法
本文总结了有哪些特征衍生方法,函数是什么,用在什么场景,具体步骤如下:数据集探索:1.ID有无重复:tcc['customerID'].nunique()==tcc.shape[0]2.有无缺失值:tcc.isnull().sum()另外需注意空格的情况,离散型变量查看函数为:forfeatureintcc[category_cols]:print(f'{feature}:{tcc[feature
- MyBatis学习:基本使用
Landy_Jay
mybatis学习java
学习之前:MyBatis是一款优秀的持久层框架,它支持自定义SQL、存储过程以及高级映射。MyBatis免除了几乎所有的JDBC代码以及设置参数和获取结果集的工作。2.1向SQL语句传参2.1.1mybatis日志输出配置MyBatis配置文件详解:官方文档:mybatis–MyBatis3|简介标签:用于选择MyBatis配置环境的标签,如开发、测试和生产环境需要不同的配置。更换环境,只需更开标
- 【IT大学生必会的】 10 种图表线性回归
.Boss.
深度学习开发语言人工智能机器学习算法
这段时间,不少同学提到了一些图表的问题。每次在使用matplotlib画图,运用这些图表说明问题的时候,很多时候是模糊的,比如说什么时候画什么图合适?其实这个根据你自己的需求,自己的想法来就行。今天的话,我这里举例在线性回归中,最常用的一些图表,应该可以cover绝大多数情况了。其他算法模型适用的图表,咱们在后面再给大家进行总结~至于数据集,表现方式,大家可以根据我给出的代码继续调整即可!那么,在
- 从MapRerankDocumentsChain迁移到LangGraph实现文档分析
bBADAS
服务器运维python
在分析长文本的场景中,MapRerankDocumentsChain提供了一种有效的策略。这种策略涉及以下步骤:将文本拆分为较小的文档。为文档集映射一个处理过程,该过程包括生成评分。根据评分对结果进行排名,并返回得分最高的结果。这种情况下的常见过程是使用文档中的上下文进行问答,强制模型生成评分以帮助选择只由相关上下文生成的答案。LangGraph的实现允许在此问题中集成工具调用和其他功能。下面我们
- 【图像预处理】
瞬间记忆
深度学习python
(4条消息)图像预处理方法总结_AI强仔的博客-CSDN博客对图像进行预处理的一些常见方法包括:调整图像大小和分辨率,以便适应模型的输入要求。对图像进行裁剪或填充,以使其大小和比例符合要求。调整图像的亮度、对比度和饱和度等图像属性。进行图像平滑或锐化操作,以去除噪声或增强图像特征。进行图像归一化或标准化,以确保各个特征在相同的尺度上。应用数据增强技术,如旋转、平移、缩放、翻转等,以扩大数据集,提高
- 使用Alchemy平台构建区块链应用程序的技术指南
dgay_hua
区块链python
在现代开发中,区块链技术已经成为一项热门技能,而Alchemy提供了一套强大的工具集,使得开发者可以轻松构建区块链应用程序。本文将带您深入了解如何在Alchemy平台上进行区块链应用的安装和设置,并展示如何使用BlockchainDocumentLoader类进行文档加载。技术背景介绍Alchemy是一个领先的区块链开发平台,通过提供强大的API和开发工具,帮助开发者轻松创建和管理区块链应用。它支
- PTA团体程序设计天梯赛-练习集51-55题
β添砖java
c++算法开发语言
L1-051打折去商场淘打折商品时,计算打折以后的价钱是件颇费脑子的事情。例如原价¥988,标明打7折,则折扣价应该是¥988x70%=¥691.60。本题就请你写个程序替客户计算折扣价。输入格式:输入在一行中给出商品的原价(不超过1万元的正整数)和折扣(为[1,9]区间内的整数),其间以空格分隔。输出格式:在一行中输出商品的折扣价,保留小数点后2位。输入样例:9887输出样例:691.60#in
- 深入了解 C# 中的 LINQ:功能、语法与应用解析
江沉晚呤时
NetcoreC#solrlucenec#.netcore
1.什么是LINQ?LINQ(LanguageIntegratedQuery,语言集成查询)是C#和其他.NET语言中的一种强大的查询功能,它允许开发者在语言中直接执行查询操作。LINQ使得开发者可以使用C#语法(或VB.NET)直接对集合、数据库、XML等数据源进行查询和操作,而不需要依赖外部查询语言(如SQL)或者复杂的API。LINQ提供了一个统一的查询模型,可以对各种数据源进行查询,包括集
- YashanDB恢复
数据库
本文内容来自YashanDB官网,原文内容请见https://doc.yashandb.com/yashandb/23.3/zh/%E6%95%B0%E6%8D%AE%...操作说明使用本方式执行恢复时,要求当前数据库实例处于NOMOUNT状态。执行恢复操作的数据库版本需与生成备份集的数据库版本完全一致。共享集群部署中,只能在主集群上执行恢复操作(即其角色必须为MASTER\_ROLE,可查询视图
- 决策树算法及其python实例
m0_74831463
算法决策树python
一、决策数的概念什么是决策树算法呢?决策树(DecisionTree)是一种基本的分类与回归方法,本文主要讨论分类决策树。决策树模型呈树形结构,在分类问题中,表示基于特征对数据进行分类的过程。它可以认为是if-then规则的集合。每个内部节点表示在属性上的一个测试,每个分支代表一个测试输出,每个叶节点代表一种类别二、决策树的构造1、决策树的构造步骤输入:训练集D={(21,11),(z2,32),
- 【小白深度教程 1.32】手把手教你从多视角图像进行 3D 重建(SfM 算法)
小寒学姐学AI
3d算法计算机视觉人工智能深度学习python三维重建
【小白深度教程1.32】手把手教你从多视角图像进行3D重建(SfM算法)1.SfM三维重建算法简介2.SfM方法和原理3.安装依赖库4.构建数据集5.可视化结果6.完整代码1.SfM三维重建算法简介从多张照片中开发三维模型被称为多视图3D重建。数码相机的进步以及图像分辨率和清晰度的提高,使得利用仅有的相机而非昂贵的特殊传感器来重建3D图像成为可能。重建的目标是从一组照片中推导场景的几何结构,假设摄
- 集睿致远CS5518 Mipi转lvds点屏方案芯片,pin to pin替代国腾GM8775C方案
单片机芯片嵌入式
GM8775C型DSI转双通道LVDS发送器产品主要实现将MIPIDSI转单/双通道LVDS功能,MIPI支持1/2/3/4通道可选,最大支持4Gbps速率。LVDS时钟频率最高154MHz,最大支持视频格式为FULLHD(1920x1200)。产品特征MIPI输入:支持MIPI®D-PHY版本1.00.00和MIPI®DSI版本1.02.00;支持1~4个数据通道,1个时钟通道;支持ULPS(超
- SpringBoot整合Swagger和Mybatis-Plus
_拾柒_
springbootmybatis
一、Swagger(一)、Swagger简介Swagger是一种用于描述、设计、构建和使用RESTful风格的Web服务的工具集和规范。它提供了一种标准的方式来定义API,并生成交互式文档,使得开发人员、测试人员和其他利益相关者可以快速了解和使用API。(二)、Swagger特点自动生成文档:基于API定义,Swagger可以自动生成交互式文档,其中包含了API的详细说明、请求示例、响应示例等信息
- SQL中where与having的区别
WD技术
#mysql面试sql数据库database
1.where和having的区别2.聚合函数和groupby3.where和having的执行顺序4.where不能使用聚合函数、having中可以使用聚合函数1.where和having的区别where:where是一个约束声明,使用where来约束来自数据库的数据;where是在结果返回之前起作用的;where中不能使用聚合函数。having:having是一个过滤声明;在查询返回结果集以后
- Spring Cloud:微服务架构的利器
Earth explosion
架构springcloud微服务
在当今快速变化的软件开发领域,微服务架构凭借其灵活性、可扩展性和易于维护的特点,成为了众多企业构建大型应用系统的首选方案。而SpringCloud,作为Spring生态系统中的一部分,为开发者提供了一整套用于构建微服务架构的工具集,极大地简化了微服务应用的开发、部署和管理过程。本文将深入介绍SpringCloud的核心概念、关键技术及其在实际项目中的应用。一、SpringCloud简介Spring
- GraphCube、Spark和深度学习技术赋能快消行业关键运营环节
weixin_30777913
开发语言大数据深度学习人工智能spark
在快消品(FMCG)行业,需求计划(DemandPlanning)、库存管理(InventoryManagement)和需求供应管理(DemandSupplyManagement)是影响企业整体效率和利润水平的关键运营环节。GraphCube图多维数据集技术、Spark大数据分析处理技术和深度学习技术的结合,为这些环节提供了智能化、动态化和实时化的解决方案,显著提升业务运营效率和企业利润。一、技术
- 一、大语言模型微调 vs. 大语言模型应用
AI Echoes
深度学习人工智能deepseek机器学习算法
一、大语言模型微调vs.大语言模型应用1.微调(Fine-Tuning)的含义与特点定义与作用微调指在预训练好(通用)的基础模型上,通过在特定领域或任务的数据集上进一步训练来调整模型参数,使其在该领域任务中获得更优表现。这种方法可以使通用模型“定制化”,更好地理解专业术语和领域知识,从而提升准确性和响应质量。例如,为医疗、法律、金融等垂直领域构建专属模型,往往需要在预训练模型基础上进行微调。特点参
- HarmonyOS实战开发-如何打造购物商城APP。
码牛程序猿
鸿蒙工程师HarmonyOS鸿蒙harmonyosOpenHarmony鸿蒙鸿蒙应用开发华为鸿蒙开发HarmonyOS
今天给大家分享一个非常好的实战项目,购物商城,购物商城是一个集购物、娱乐、服务于一体的综合性平台,致力于为消费者提供一站式的购物体验。各种功能都有涉及,最适合实现学习。做好商城项目,肯定会把开发中遇到的百分之60的技术得到实战的经验。下面介绍一下商城的主要模块:首页1,搜索框,点击进入搜索页面2,顶部分类,通过不同分类查询对应信息3,广告轮播,自动切换图片,可以进行点击进入4,商品列表,展示每个项
- MyBatis 中 resultType 的使用详解
旧故新长
windows
MyBatis中resultType的使用详解1.resultType的含义在MyBatis中,resultType指的是每一行查询结果的Java类型,而不是整个结果集的类型。常见的用法:resultType="java.lang.String":表示每一行是一个字符串。resultType="com.example.User":表示每一行是一个User对象。2.resultType与方法返回值类
- 如何用大模型评估大模型——PAI-Judge裁判员大语言模型的实现简介
人工智能机器学习大模型llm
背景:为什么需要一个「裁判员大语言模型」?随着大模型(LLM)技术的爆发式应用,如何快速、客观评估模型回复质量成为行业痛点。对于回答客观问题的LLM,目前业内已经有比较成熟的数据集进行效果评测与模型打榜。但是如何对一个开放式生成LLM进行效果评估,尤其在知识问答、客服对话、内容合规、RAG(检索增强生成)等场景中,目前主流的评测方式仍存在一定的局限性:人工标注:成本高昂、效率低下;传统的自动化评估
- 【Linux】Linux下调试器gdb的使用
安 度 因
Linuxlinux运维服务器测试工具调试
作者主页:@安度因学习社区:StackFrame专栏链接:Linux文章目录一、前言二、铺垫三、指令集和使用1、指令集2、演示四、结语如果无聊的话,就来逛逛我的博客栈吧!一、前言前几篇Linux博客中,我们分别学习了与编辑、编译、自动化构建代码、上传代码的工具。而今天,我们将学习最后一个工具——Linux下的调试器gdb
- 机器学习课堂4线性回归模型+特征缩放
木尘152132
机器学习线性回归python
一、实验2-2,线性回归模型,计算模型在训练数据集和测试数据集上的均方根误差代码:#2-2线性回归模型importpandasaspdimportnumpyasnpimportmatplotlib.pyplotasplt#参数设置iterations=3000#迭代次数learning_rate=0.0001#学习率m_train=3000#训练样本的数量flag_plot_lines=False
- 深入理解正则表达式:语法全解析
谢兴豪
本文还有配套的精品资源,点击获取简介:正则表达式是一种用于文本匹配的模式,广泛应用在文本处理、数据验证等领域。本文将全面探讨正则表达式的语法细节,包括字符匹配、元字符、字符类、量词、分组与反向引用、选择与否定、位置锚点、预定义字符集、模式修饰符、回溯控制以及正向先行断言和正向后行断言。掌握这些知识有助于提高编程效率和代码质量。1.正则表达式简介正则表达式是IT行业中的“瑞士军刀”,它们在文本处理、
- 怎么样才能成为专业的程序员?
cocos2d-x小菜
编程PHP
如何要想成为一名专业的程序员?仅仅会写代码是不够的。从团队合作去解决问题到版本控制,你还得具备其他关键技能的工具包。当我们询问相关的专业开发人员,那些必备的关键技能都是什么的时候,下面是我们了解到的情况。
关于如何学习代码,各种声音很多,然后很多人就被误导为成为专业开发人员懂得一门编程语言就够了?!呵呵,就像其他工作一样,光会一个技能那是远远不够的。如果你想要成为
- java web开发 高并发处理
BreakingBad
javaWeb并发开发处理高
java处理高并发高负载类网站中数据库的设计方法(java教程,java处理大量数据,java高负载数据) 一:高并发高负载类网站关注点之数据库 没错,首先是数据库,这是大多数应用所面临的首个SPOF。尤其是Web2.0的应用,数据库的响应是首先要解决的。 一般来说MySQL是最常用的,可能最初是一个mysql主机,当数据增加到100万以上,那么,MySQL的效能急剧下降。常用的优化措施是M-S(
- mysql批量更新
ekian
mysql
mysql更新优化:
一版的更新的话都是采用update set的方式,但是如果需要批量更新的话,只能for循环的执行更新。或者采用executeBatch的方式,执行更新。无论哪种方式,性能都不见得多好。
三千多条的更新,需要3分多钟。
查询了批量更新的优化,有说replace into的方式,即:
replace into tableName(id,status) values
- 微软BI(3)
18289753290
微软BI SSIS
1)
Q:该列违反了完整性约束错误;已获得 OLE DB 记录。源:“Microsoft SQL Server Native Client 11.0” Hresult: 0x80004005 说明:“不能将值 NULL 插入列 'FZCHID',表 'JRB_EnterpriseCredit.dbo.QYFZCH';列不允许有 Null 值。INSERT 失败。”。
A:一般这类问题的存在是
- Java中的List
g21121
java
List是一个有序的 collection(也称为序列)。此接口的用户可以对列表中每个元素的插入位置进行精确地控制。用户可以根据元素的整数索引(在列表中的位置)访问元素,并搜索列表中的元素。
与 set 不同,列表通常允许重复
- 读书笔记
永夜-极光
读书笔记
1. K是一家加工厂,需要采购原材料,有A,B,C,D 4家供应商,其中A给出的价格最低,性价比最高,那么假如你是这家企业的采购经理,你会如何决策?
传统决策: A:100%订单 B,C,D:0%
&nbs
- centos 安装 Codeblocks
随便小屋
codeblocks
1.安装gcc,需要c和c++两部分,默认安装下,CentOS不安装编译器的,在终端输入以下命令即可yum install gccyum install gcc-c++
2.安装gtk2-devel,因为默认已经安装了正式产品需要的支持库,但是没有安装开发所需要的文档.yum install gtk2*
3. 安装wxGTK
yum search w
- 23种设计模式的形象比喻
aijuans
设计模式
1、ABSTRACT FACTORY—追MM少不了请吃饭了,麦当劳的鸡翅和肯德基的鸡翅都是MM爱吃的东西,虽然口味有所不同,但不管你带MM去麦当劳或肯德基,只管向服务员说“来四个鸡翅”就行了。麦当劳和肯德基就是生产鸡翅的Factory 工厂模式:客户类和工厂类分开。消费者任何时候需要某种产品,只需向工厂请求即可。消费者无须修改就可以接纳新产品。缺点是当产品修改时,工厂类也要做相应的修改。如:
- 开发管理 CheckLists
aoyouzi
开发管理 CheckLists
开发管理 CheckLists(23) -使项目组度过完整的生命周期
开发管理 CheckLists(22) -组织项目资源
开发管理 CheckLists(21) -控制项目的范围开发管理 CheckLists(20) -项目利益相关者责任开发管理 CheckLists(19) -选择合适的团队成员开发管理 CheckLists(18) -敏捷开发 Scrum Master 工作开发管理 C
- js实现切换
百合不是茶
JavaScript栏目切换
js主要功能之一就是实现页面的特效,窗体的切换可以减少页面的大小,被门户网站大量应用思路:
1,先将要显示的设置为display:bisible 否则设为none
2,设置栏目的id ,js获取栏目的id,如果id为Null就设置为显示
3,判断js获取的id名字;再设置是否显示
代码实现:
html代码:
<di
- 周鸿祎在360新员工入职培训上的讲话
bijian1013
感悟项目管理人生职场
这篇文章也是最近偶尔看到的,考虑到原博客发布者可能将其删除等原因,也更方便个人查找,特将原文拷贝再发布的。“学东西是为自己的,不要整天以混的姿态来跟公司博弈,就算是混,我觉得你要是能在混的时间里,收获一些别的有利于人生发展的东西,也是不错的,看你怎么把握了”,看了之后,对这句话记忆犹新。 &
- 前端Web开发的页面效果
Bill_chen
htmlWebMicrosoft
1.IE6下png图片的透明显示:
<img src="图片地址" border="0" style="Filter.Alpha(Opacity)=数值(100),style=数值(3)"/>
或在<head></head>间加一段JS代码让透明png图片正常显示。
2.<li>标
- 【JVM五】老年代垃圾回收:并发标记清理GC(CMS GC)
bit1129
垃圾回收
CMS概述
并发标记清理垃圾回收(Concurrent Mark and Sweep GC)算法的主要目标是在GC过程中,减少暂停用户线程的次数以及在不得不暂停用户线程的请夸功能,尽可能短的暂停用户线程的时间。这对于交互式应用,比如web应用来说,是非常重要的。
CMS垃圾回收针对新生代和老年代采用不同的策略。相比同吞吐量垃圾回收,它要复杂的多。吞吐量垃圾回收在执
- Struts2技术总结
白糖_
struts2
必备jar文件
早在struts2.0.*的时候,struts2的必备jar包需要如下几个:
commons-logging-*.jar Apache旗下commons项目的log日志包
freemarker-*.jar  
- Jquery easyui layout应用注意事项
bozch
jquery浏览器easyuilayout
在jquery easyui中提供了easyui-layout布局,他的布局比较局限,类似java中GUI的border布局。下面对其使用注意事项作简要介绍:
如果在现有的工程中前台界面均应用了jquery easyui,那么在布局的时候最好应用jquery eaysui的layout布局,否则在表单页面(编辑、查看、添加等等)在不同的浏览器会出
- java-拷贝特殊链表:有一个特殊的链表,其中每个节点不但有指向下一个节点的指针pNext,还有一个指向链表中任意节点的指针pRand,如何拷贝这个特殊链表?
bylijinnan
java
public class CopySpecialLinkedList {
/**
* 题目:有一个特殊的链表,其中每个节点不但有指向下一个节点的指针pNext,还有一个指向链表中任意节点的指针pRand,如何拷贝这个特殊链表?
拷贝pNext指针非常容易,所以题目的难点是如何拷贝pRand指针。
假设原来链表为A1 -> A2 ->... -> An,新拷贝
- color
Chen.H
JavaScripthtmlcss
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd"> <HTML> <HEAD>&nbs
- [信息与战争]移动通讯与网络
comsci
网络
两个坚持:手机的电池必须可以取下来
光纤不能够入户,只能够到楼宇
建议大家找这本书看看:<&
- oracle flashback query(闪回查询)
daizj
oracleflashback queryflashback table
在Oracle 10g中,Flash back家族分为以下成员:
Flashback Database
Flashback Drop
Flashback Table
Flashback Query(分Flashback Query,Flashback Version Query,Flashback Transaction Query)
下面介绍一下Flashback Drop 和Flas
- zeus持久层DAO单元测试
deng520159
单元测试
zeus代码测试正紧张进行中,但由于工作比较忙,但速度比较慢.现在已经完成读写分离单元测试了,现在把几种情况单元测试的例子发出来,希望有人能进出意见,让它走下去.
本文是zeus的dao单元测试:
1.单元测试直接上代码
package com.dengliang.zeus.webdemo.test;
import org.junit.Test;
import o
- C语言学习三printf函数和scanf函数学习
dcj3sjt126com
cprintfscanflanguage
printf函数
/*
2013年3月10日20:42:32
地点:北京潘家园
功能:
目的:
测试%x %X %#x %#X的用法
*/
# include <stdio.h>
int main(void)
{
printf("哈哈!\n"); // \n表示换行
int i = 10;
printf
- 那你为什么小时候不好好读书?
dcj3sjt126com
life
dady, 我今天捡到了十块钱, 不过我还给那个人了
good girl! 那个人有没有和你讲thank you啊
没有啦....他拉我的耳朵我才把钱还给他的, 他哪里会和我讲thank you
爸爸, 如果地上有一张5块一张10块你拿哪一张呢....
当然是拿十块的咯...
爸爸你很笨的, 你不会两张都拿
爸爸为什么上个月那个人来跟你讨钱, 你告诉他没
- iptables开放端口
Fanyucai
linuxiptables端口
1,找到配置文件
vi /etc/sysconfig/iptables
2,添加端口开放,增加一行,开放18081端口
-A INPUT -m state --state NEW -m tcp -p tcp --dport 18081 -j ACCEPT
3,保存
ESC
:wq!
4,重启服务
service iptables
- Ehcache(05)——缓存的查询
234390216
排序ehcache统计query
缓存的查询
目录
1. 使Cache可查询
1.1 基于Xml配置
1.2 基于代码的配置
2 指定可搜索的属性
2.1 可查询属性类型
2.2 &
- 通过hashset找到数组中重复的元素
jackyrong
hashset
如何在hashset中快速找到重复的元素呢?方法很多,下面是其中一个办法:
int[] array = {1,1,2,3,4,5,6,7,8,8};
Set<Integer> set = new HashSet<Integer>();
for(int i = 0
- 使用ajax和window.history.pushState无刷新改变页面内容和地址栏URL
lanrikey
history
后退时关闭当前页面
<script type="text/javascript">
jQuery(document).ready(function ($) {
if (window.history && window.history.pushState) {
- 应用程序的通信成本
netkiller.github.com
虚拟机应用服务器陈景峰netkillerneo
应用程序的通信成本
什么是通信
一个程序中两个以上功能相互传递信号或数据叫做通信。
什么是成本
这是是指时间成本与空间成本。 时间就是传递数据所花费的时间。空间是指传递过程耗费容量大小。
都有哪些通信方式
全局变量
线程间通信
共享内存
共享文件
管道
Socket
硬件(串口,USB) 等等
全局变量
全局变量是成本最低通信方法,通过设置
- 一维数组与二维数组的声明与定义
恋洁e生
二维数组一维数组定义声明初始化
/** * */ package test20111005; /** * @author FlyingFire * @date:2011-11-18 上午04:33:36 * @author :代码整理 * @introduce :一维数组与二维数组的初始化 *summary: */ public c
- Spring Mybatis独立事务配置
toknowme
mybatis
在项目中有很多地方会使用到独立事务,下面以获取主键为例
(1)修改配置文件spring-mybatis.xml <!-- 开启事务支持 --> <tx:annotation-driven transaction-manager="transactionManager" /> &n
- 更新Anadroid SDK Tooks之后,Eclipse提示No update were found
xp9802
eclipse
使用Android SDK Manager 更新了Anadroid SDK Tooks 之后,
打开eclipse提示 This Android SDK requires Android Developer Toolkit version 23.0.0 or above, 点击Check for Updates
检测一会后提示 No update were found