目录
准备工作
Zookeeper 和 Kafka
启动服务
创建和查看消息主题
Java示例
步骤一:引入 POM 依赖
步骤二:生产者
步骤三: 消费者
Kafka流式计算
注意:本文参考 二十分钟快速上手Kafka开发(Java示例) - 走看看
java实现kafka消息发送和接收 - 君子笑而不语 - 博客园
Kafka英文官方文档 Apache Kafka
中文参数 kafka生产者和消费者的具体交互以及核心参数详解_我的身前一尺是我的世界的博客-CSDN博客_kafka生产者消费者参数
从 “Zookeeper Download” 下载 zookeeper 压缩包,从 “Kafka Download” 下载 Kafka 压缩包,使用 tar xzvf xxx.tar.gz 解压即可。
启动 Zookeeper 服务。切换到 Zookeeper 解压目录下,执行如下命令:
bin/zkServer.sh start-foreground
启动 Kafka 服务。切换到 Kafka 解压目录下,执行如下命令:
bin/kafka-server-start.sh config/server.properties
执行如下命令,创建了一个 order-events 的消息主题:
bin/kafka-topics.sh --create --topic order-events --bootstrap-server localhost:9092
查看主题 order-events 的信息:
bin/kafka-topics.sh --describe --topic order-events --bootstrap-server localhost:9092
org.apache.kafka
kafka-clients
0.11.0.0
org.apache.kafka
kafka-streams
0.11.0.0
package com.roncoo.example.kafka;
import java.util.Properties;
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerRecord;
public class ProducerDemo {
private final KafkaProducer producer;
public final static String TOPIC = "test5";
private ProducerDemo() {
Properties props = new Properties();
props.put("bootstrap.servers", "xxx:9092,1xxx:9092,xxx:9092");//xxx服务器ip
props.put("acks", "all");//所有follower都响应了才认为消息提交成功,即"committed"
props.put("retries", 0);//retries = MAX 无限重试,直到你意识到出现了问题:)
props.put("batch.size", 16384);//producer将试图批处理消息记录,以减少请求次数.默认的批量处理消息字节数
//batch.size当批量的数据大小达到设定值后,就会立即发送,不顾下面的linger.ms
props.put("linger.ms", 1);//延迟1ms发送,这项设置将通过增加小的延迟来完成--即,不是立即发送一条记录,producer将会等待给定的延迟时间以允许其他消息记录发送,这些消息记录可以批量处理
props.put("buffer.memory", 33554432);//producer可以用来缓存数据的内存大小。
props.put("key.serializer",
"org.apache.kafka.common.serialization.IntegerSerializer");
props.put("value.serializer",
"org.apache.kafka.common.serialization.StringSerializer");
producer = new KafkaProducer(props);
}
public void produce() {
int messageNo = 1;
final int COUNT = 5;
while(messageNo < COUNT) {
String key = String.valueOf(messageNo);
String data = String.format("hello KafkaProducer message %s from hubo 06291018 ", key);
try {
producer.send(new ProducerRecord(TOPIC, data));
} catch (Exception e) {
e.printStackTrace();
}
messageNo++;
}
producer.close();
}
public static void main(String[] args) {
new ProducerDemo().produce();
}
}
package com.roncoo.example.kafka;
import java.util.Arrays;
import java.util.Properties;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;
public class UserKafkaConsumer extends Thread {
public static void main(String[] args){
Properties properties = new Properties();
properties.put("bootstrap.servers", "xxx:9092,xxx:9092,xxx:9092");//xxx是服务器集群的ip
properties.put("group.id", "jd-group");
properties.put("enable.auto.commit", "true");
properties.put("auto.commit.interval.ms", "1000");
properties.put("auto.offset.reset", "latest");
properties.put("session.timeout.ms", "30000");
properties.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
properties.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
KafkaConsumer kafkaConsumer = new KafkaConsumer<>(properties);
kafkaConsumer.subscribe(Arrays.asList("test5"));
while (true) {
ConsumerRecords records = kafkaConsumer.poll(100);
for (ConsumerRecord record : records) {
System.out.println("-----------------");
System.out.printf("offset = %d, value = %s", record.offset(), record.value());
System.out.println();
}
}
}
}
Kafka 还可以用于可靠的数据源,为实时计算组件提供事件流,如下图所示代码:
package cc.lovesq.kafkamsg;
import cc.lovesq.model.BookInfo;
import cc.lovesq.util.TimeUtil;
import com.alibaba.fastjson.JSONObject;
import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;
import org.apache.kafka.common.serialization.Serdes;
import org.apache.kafka.streams.KafkaStreams;
import org.apache.kafka.streams.StreamsBuilder;
import org.apache.kafka.streams.StreamsConfig;
import org.apache.kafka.streams.kstream.KStream;
import org.apache.kafka.streams.kstream.Materialized;
import org.apache.kafka.streams.kstream.Printed;
import org.springframework.stereotype.Component;
import javax.annotation.PostConstruct;
import java.util.Properties;
/**
* @Description Kafka 事件流
* @Date 2021/2/4 8:17 下午
* @Created by qinshu
*/
@Component
public class KafkaMessageStream {
private static Log log = LogFactory.getLog(KafkaMessageStream.class);
@PostConstruct
public void init() {
Properties properties = new Properties();
properties.put(StreamsConfig.APPLICATION_ID_CONFIG, "orderCount");
properties.put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092");
properties.put(StreamsConfig.DEFAULT_KEY_SERDE_CLASS_CONFIG, Serdes.String().getClass().getName());
properties.put(StreamsConfig.DEFAULT_VALUE_SERDE_CLASS_CONFIG, Serdes.String().getClass().getName());
StreamsBuilder streamBuilder = new StreamsBuilder();
KStream source = streamBuilder.stream("order-events");
// 计算下单中每个 goodsId 出现的次数
KStream result = source.filter(
(key, value) -> value.startsWith("{") && value.endsWith("}")
).mapValues(
value -> JSONObject.parseObject(value, BookInfo.class)
).mapValues(
bookInfo -> bookInfo.getGoods().getGoodsId().toString()
).groupBy((key,value) -> value).count(Materialized.as("goods-order-count")
).mapValues(value -> Long.toString(value)).toStream();
result.print(Printed.toSysOut());
new Thread(
() -> {
TimeUtil.sleepInSecs(10);
KafkaStreams streams = new KafkaStreams(streamBuilder.build(), properties);
streams.start();
log.info("stream-start ...");
TimeUtil.sleepInSecs(10);
streams.close();
}
).start();
}
}
这里还必须事先创建一个 Topic = goods-order-count 的主题:
bin/kafka-topics.sh --create --topic goods-order-count --bootstrap-server localhost:9092