高质量的快速的图像缩放 三次线性插值和MipMap链

A:对于二次线性插值、三次卷积插值算法,但它们处理缩小到0.5倍以下的
时候效果就会越来越差;这是因为插值的时候自考虑了附近点的原因;如下图:
 
 
可以看出:当缩小的比例很大的时候,插值算法的效果和近邻取样的效果差不多了:( ;
一种可行的解决方案就是:缩小时考虑更多的点; 但这种解决方案有很多缺点:函数编写麻烦,
速度也许会很慢,优化也不容易做; 还有一个方案就是预先建立一个缩放好的大小不同的图片
列表,每一张图片都是前一张的0.5倍(这种图片列表就是MipMap链),缩放的时候根据需要缩放
的比例从表中选择一张大小接近的图片来作为缩放的源图片; 该方案的优点:不需要编写新的
底层缩放算法,直接使用前面优化好的插值算法; 缺点:需要预先建立MipMap链,它需要时间,
并且它的储存需要多占用原图片的1/3空间(0.5^2+0.5^4+0.5^6+...=1/3);还有一个不太明显
的小问题,就是在一张图片的连续的比例不同的缩放中,选择会从MipMap的一张源图片跳到另
一张图片,视觉效果上可能会有一个小的跳跃(我在《魔兽世界》里经常看到这种效应:);一种
改进方案就是选择MipMap图片的时候,选择出附近的两张图片作为缩放的源图片;对两张图片
单独进行插值(和原来一致)输出两个值,然后把这两个值线性插值为最终结果;还有一个比较
大的缺点就是当缩放比例不均匀时(比如x轴放大y轴缩小),缩放效果也不好;
(当前很多显卡都提供了MipMap纹理和对应的插值方案,OpenGL和DirectX都提供了操作接口)
 
 
("三次线性插值和MipMap链"其实比较简单,这里只给出关键代码或算法)
 
 
B: MipMap图片的生成:
原图片缩放到0.5倍(宽和高都为原图片的1/2),在把0.5倍的图片缩放到0.25倍,....
直到宽和高都为1个像素,如果有一个长度先到1就保持1; 缩放过程中,可以可采用前面的缩放插值算法;
如果为了速度可以考虑这样的方案,要求原图片的宽和高必须是2的整数次方的数值,缩放时就可以直接将
2x2的像素快速合并为一个像素(如果允许原图片宽和高为任何值,可以考虑在合并时引入Alpha通道);
 
C: MipMap链图片的储存方案:
 
 
MipMap链图片示意图
 
 
可能的一种物理储存方案(我对每张图片加了一个边框)
 
D: 定义MipMap数据结构:
MipMap数据结构可以定义为一个TPicRegion数组和该数组的大小;
(MipMap图片的储存参见上面的图示)
比如:
 
 
#include
typedef std::vector TMipMap;
//其中,第一个元素TMipMap[0]指向原始图片,后面的依次为缩小图片;
 
E: MipMap的选择函数和偏好:
在进行缩放时,根据目标图片缓冲区的大小来动态的选者MipMap中的一幅图片来作为源图片;这就需要一个
选择函数;比如:
 
long SelectBestPicIndex(const TMipMap& mip,const long dstWidth,const long dstHeight)
{
long oldS=mip[0].width*mip[0].height;
long dstS=dstWidth*dstHeight;
if ( (dstS>=oldS) || (mip.size()==1) )
return 0;
else if (dstS<=1)
return mip.size()-1;
else
return (long)(log(oldS/dstS)*0.5+0.5);
}
选择函数可以增加一个偏好参数:
mip选择偏好:0.5没有偏好,靠近0偏向选择小图片,靠近1偏向选择大图片(质量好一些)
 
float public_mip_bias=0.5; //[0..1]
 
long SelectBestPicIndex(const TMipMap& mip,const long dstWidth,const long dstHeight)
{
long oldS=mip[0].width*mip[0].height;
long dstS=dstWidth*dstHeight;
if ( (dstS>=oldS) || (mip.size()==1) )
return 0;
else if (dstS<=1)
return mip.size()-1;
else
return (long)(log(oldS/dstS)*0.5+public_mip_bias);
}
F:利用MipMap后的缩放效果:
 
 
 
G: 在MipMap的两张图片之间插值:
选择MipMap的时候,同时可以选择相邻的两张MipMap图片;分别进行插值算法后得到两个颜色结果;
对两个MipMap图片产生的评价值可以作为这两个颜色的插值权重,得到最终的颜色插值结果;优点是
缩放效果好,避免跳跃;缺点是速度慢:)
 
选择和权重函数的一个可能实现:
 
struct TMipWeight {
long BigMip;
long SmallMip;
float BigMipWeight;//[0..1]
};
 
TMipWeight SelectBestPicIndexEx(const TMipMap& mip,const long dstWidth,const long dstHeight)
{
long oldS=mip[0].width*mip[0].height;
long dstS=dstWidth*dstHeight;
TMipWeight result;
if ( (dstS>=oldS) || (mip.size()==1) )
{
result.BigMip=0;
result.SmallMip=0;
result.BigMipWeight=1.0;
}
else if (dstS<=1)
{
result.BigMip=mip.size()-1;
result.SmallMip=mip.size()-1;
result.BigMipWeight=1.0;
}
else
{
float bestIndex=log(oldS/dstS)*0.5+0.5; //or + public_mip_bias
result.BigMip=(long)bestIndex;
if (bestIndex==mip.size()-1)
{
result.SmallMip=mip.size()-1;
result.BigMipWeight=1.0;
}
else
{
result.SmallMip=result.BigMip+1;
result.BigMipWeight=1.0-(bestIndex-result.BigMip);
}
}
return result;
}
 
H:MipMap间插值效果:
 
 

你可能感兴趣的:(map)