手写简版倒排索引(Inverted Index)

说明

周末闲来无事花点时间,基于Lucene倒排索引的思想,使用Python简单实现了索引文档与短语搜索的小功能,目的是帮助快速理解倒排索引的写入与查询的基本思想。
Indexing and search
Term --- DosIDS
简单的小程序
# -*- coding: utf-8 -*-
"""
    File Name: indexingAndSearch.py
    Author: Donny.fang
    Date: 2021/1/16 18:12
    Desc: Python3.8
"""
import logging
from collections import deque

LOG_FORMAT = "[%(asctime)s][%(levelname)s ] %(message)s"
DATE_FORMAT = "%Y-%m-%d %H:%M:%S"

logging.basicConfig(level=logging.INFO, format=LOG_FORMAT, datefmt=DATE_FORMAT)


class TermTrie(object):
    """
        如下采用dict存储结点对象,Trie树的存储结构如下:
        {
              "a":{
                "p":{
                  "p":{
                    "#":"#",
                    "app":[
                      0
                    ],
                    "l":{
                      "e":{
                        "#":"#",
                        "apple":[
                          0,
                          1
                        ],
                        "e":{
                          "#":"#",
                          "applee":[
                            1
                          ]
                        }
                      }
                    }
                  }
                }
              }
            }
    """

    def __init__(self):
        self.root = {}
        self.end_of_word = '#'

    def insert(self, term, docId):
        """
        Inserts a term into the trie.
        :type term: str
        :type docId: int
        :rtype: None
        """
        node = self.root

        for c in term:
            node = node.setdefault(c, {})

        node.setdefault(term, []).append(docId)
        node[self.end_of_word] = self.end_of_word

    def getDocIdsByTerm(self, term):
        """
        Returns docIds by term
        :type term: str
        :rtype: list
        """
        node = self.root
        docIds = []

        for c in term:
            if c not in node:
                break

            node = node[c]

        if self.end_of_word in node:
            docIds = node.get(term, [])

        return docIds


class IndexingSearch(object):
    """
        简单功能描述:
        1. 从文件中逐行的读取数据,并对每行数据以空格的方式进行分词,形成terms
        2. 将形成的terms分别装进字典树中,并存储每个term对应的docIds
        3. 执行短语搜索时,同样对phrase以空格的方式进行分词,形成terms
        4. 针对每个term,获取到满足条件的docIds,并获取最终的Document
    """

    def __init__(self):
        self.docs, self.trie = [], TermTrie()

    @staticmethod
    def generateTerms(document):
        """
            以空格的方式对document进行分词,比如"hello world" ---> "hello", "world"
        :param document: a line text
        :return: list type, like ["hello", "world"]
        """
        assert isinstance(document, str)

        if len(document.strip()) < 1:
            logging.error("document is empty")

        return document.strip().split()

    def indexingDocument(self, fileName):
        """
            索引文档,比如document:"hello world"(假设document id为0),依据空格分词,会形成hello与world两个term;
            对于每个term(hello and world),将其装载进字典树中,然后记录term对应的docID;比如hello ---> [0], world --->[0]
        :param fileName: file for indexing
        :return: trie
        """
        docId = 0

        with open(fileName, "r") as fr:
            while 1:
                doc = fr.readline().strip()

                if not doc:  # 假设document之间无空行,此处表示遍历到文件末尾,结束
                    break

                terms = IndexingSearch.generateTerms(doc)

                for term in terms:
                    self.trie.insert(term, docId)

                docId += 1

                # 将从文件中遍历得到的每个document,装载进内存list中
                # docs = ["hello world", "hello city", "welcome to china"]
                self.docs.append(doc)

        return {
            "trie": self.trie.root
        }

    def phraseSearch(self, phrase):
        """
            执行短语查询,以空格的方式对phrase作分词,比如"hello world" ---> "hello", "world"
        :param phrase: query phrase
        :return: docIds
        """
        assert isinstance(phrase, str)

        if len(phrase.strip()) <= 0:
            logging.error("query phrase cannot be empty")

        arrs = deque()

        for term in phrase.split():
            arrs.append(self.trie.getDocIdsByTerm(term))

        docsIdToLoad = IndexingSearch.multipleArraysUnion(arrs)

        print("\n".join(["{}: {}".format(index, self.docs[index]) for index in docsIdToLoad]))

    @staticmethod
    def multipleArraysUnion(arrays):
        """
            多个数组求并集,比如[1,2,3]与[2,3,5,7]并集结果为[1,2,3,5,7]
        :param arrays: multiple arrays in deque
        :return: list type, sorted array
        """
        assert isinstance(arrays, deque)

        if len(arrays) < 1:
            logging.error("The number of ordered arrays is 0")

        rawArray = arrays.popleft()

        while len(arrays) > 0:
            arr = arrays.popleft()
            rawArray = list(set(rawArray).union(set(arr)))

        return sorted(rawArray)


if __name__ == '__main__':
    indexingSearch = IndexingSearch()

    # 索引文档,内部组装简版的倒排索引
    indexingSearch.indexingDocument("/root/hello/myfile")

    # 执行短语查询
    indexingSearch.phraseSearch("hello world")


小结

Python手写Lucene倒排索引小功能,这里为啥使用字典树来存储term呢?其实主要是为了节省空间,比如"app"与"apple"如果用哈希表来存储,则会分别存储"app"与"apple",而如果使用字典树则只会存储"a,p,p,l,e"这5个字母,存储空间节省了一些,试想一下,如果terms很多的情况下,字典树的这种方式会节省很多的存储空间;当然在字典树中去查找一个term,通常会比在哈希表中查找term耗时,字典树的查找时间复杂度为O(len(term))。

你可能感兴趣的:(手写简版倒排索引(Inverted Index))