当键入:>> set(text,'Interpreter')
Matlab将返回'Interpreter'所包含的属性值:
[ latex | {tex} | none ]。
默认值是tex。
Tex的用法在Matlab的帮助文档里有详细介绍,这里主要介绍一下如何采用latex编辑公式。
在matlab中,Latex编辑公式的基本格式:
\( 数学公式 \),或者$ 数学公式 $,或者$$ 数学公式 $$。
常用公式编辑命令:
1.上标用^和下表用_,希腊字母与tex一样,即\alpha表示α等,详见帮助文档“Text
Properties”。
2.求和
$$\sum_{i=1}^{n} x_{i}$$
3.积分
$$ \int_{0}^{1}$$
4.求极限
$$\lim_{n \rightarrow \infty}$$ %n趋于无穷符号在lim正下方
$\lim_{n \rightarrow \infty} $ %趋于无穷符号在lim右下角
5. 分式
$$\frac{1}x$$ %1/x
6. 根式
$$\sqrt{x}$$
7. 上划线
$$\overline{x}$$
8. 下划线
$$\underline{x}$$ %下划线在x的正下方
9.卧式花括号命令
$$\overbrace{x+y+z+w}$$
10.仰式花括号命令
$$a+\underbrace{b+c+d} $$
11.戴帽命令
$$\hat{o}\ \ \check{o}\ \ \breve{o}$$
$$\widehat{A+B} \ \ \widetilde{a+b}$$
$$\vec{\imath}+\vec{\jmath}=\vec{k}$$
12.堆砌命令
$$y\stackrel{\rm def}{=} f(x) \stackrel{x\rightarrow
0}{\rightarrow} A$$
13.省略号
$\cdots \ldots \vdots \ddots $
Example — Using LaTeX to Format Math Equations
The LaTeX markup language evolved from TEX, and has a superset of
its capabilities. LaTeX gives you more elaborate control over
specifying and styling mathematical symbols.
The following example illustrates some LaTeX typesetting
capabilities when used with the text function. Because the default
interpreter is for TEX, you need to specify the parameter-value
pair 'interpreter','latex' when typesetting equations such as are
contained in the following script:
%% LaTeX Examples--Some well known equations rendered in
LaTeX
%
figure('color','white','units','inches','position',[2 2 4
6.5]);
axis off
%% A matrix; LaTeX code is
% \hbox {magic(3) is } \left( {\matrix{ 8 & 1
& 6 \cr
% 3 & 5 & 7 \cr 4 &
9 & 2 } } \right)
h(1) = text('units','inch', 'position',[.2 5], ...
'fontsize',14, 'interpreter','latex', 'string',...
['$$\hbox
{magic(3) is } \left( {\matrix{ 8 & 1
& 6 \cr'...
'3
& 5 & 7 \cr 4 & 9
& 2 } } \right)$$']);
%% A 2-D rotation transform; LaTeX code is
% \left[ {\matrix{\cos(\phi) &
-\sin(\phi) \cr
% \sin(\phi) & \cos(\phi)
\cr}}
% \right] \left[ \matrix{x \cr y} \right]
% % $$ \left[ {\matrix{\cos(\phi)
% & -\sin(\phi) \cr \sin(\phi)
& \cos(\phi) % \cr}}
% \right] \left[ \matrix{x \cr y} \right]
$$
%
h(2) = text('units','inch', 'position',[.2 4], ...
'fontsize',14, 'interpreter','latex', 'string',...
['$$\left[
{\matrix{\cos(\phi) & -\sin(\phi) \cr'...
'\sin(\phi)
& \cos(\phi) \cr}} \right]'...
'\left[
\matrix{x \cr y} \right]$$']);
%% The Laplace transform; LaTeX code is
% L\{f(t)\} \equiv F(s) = \int_0^\infty\!\!{e^{-st}f(t)dt}
% $$ L\{f(t)\} \equiv F(s) =
\int_0^\infty\!\!{e^{-st}f(t)dt} $$
% The Initial Value Theorem for the Laplace
transform:
% \lim_{s \rightarrow \infty} sF(s) = \lim_{t
\rightarrow 0} f(t)
% $$ \lim_{s \rightarrow \infty} sF(s) = \lim_{t
\rightarrow 0}
% f(t) $$
%
h(3) = text('units','inch', 'position',[.2 3], ...
'fontsize',14, 'interpreter','latex', 'string',...
['$$L\{f(t)\} \equiv F(s) =
\int_0^\infty\!\!{e^{-st}'...
'f(t)dt}$$']);
%% The definition of e; LaTeX code is
% e = \sum_{k=0}^\infty {1 \over {k!} }
% $$ e = \sum_{k=0}^\infty {1 \over {k!} }
$$
%
h(4) = text('units','inch', 'position',[.2 2], ...
'fontsize',14, 'interpreter','latex', 'string',...
'$$e =
\sum_{k=0}^\infty {1 \over {k!} } $$');
%% Differential equation
% The equation for motion of a falling body with air
resistance
% LaTeX code is
% m \ddot y = -m g + C_D \cdot {1 \over 2} \rho
{\dot y}^2 \cdot A
% $$ m \ddot y = -m g + C_D \cdot {1 \over 2}
\rho {\dot y}^2
% \cdot A $$
%
h(5) = text('units','inch', 'position',[.2 1], ...
'fontsize',14, 'interpreter','latex', 'string',...
['$$m \ddot
y = -m g + C_D \cdot {1 \over 2}'...
'\rho {\dot
y}^2 \cdot A$$']);
%% Integral Equation; LaTeX code is
% \int_{0}^{\infty} x^2 e^{-x^2} dx =
\frac{\sqrt{\pi}}{4} % $$ \int_{0}^{\infty} x^2 e^{-x^2} dx =
\frac{\sqrt{\pi}}{4} $$ % h(6) = text('units','inch', 'position',[.2 0], ...
'fontsize',14, 'interpreter','latex', 'string',...
'$$\int_{0}^{\infty} x^2 e^{-x^2} dx =
\frac{\sqrt{\pi}}{4}$$');