神经网络中weight decay起到的做用是什么?momentum呢?normalization呢?

作者:陈永志
链接:https://www.zhihu.com/question/24529483/answer/114711446
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

一、weight decay(权值衰减)的使用既不是为了提高你所说的收敛精确度也不是为了提高收敛速度,其最终目的是防止过拟合。在损失函数中,weight decay是放在正则项(regularization)前面的一个系数,正则项一般指示模型的复杂度,所以weight decay的作用是调节模型复杂度对损失函数的影响,若weight decay很大,则复杂的模型损失函数的值也就大。
二、momentum是梯度下降法中一种常用的加速技术。对于一般的SGD,其表达式为 , 沿负梯度方向下降。而带momentum项的SGD则写生如下形式:


其中 即momentum系数,通俗的理解上面式子就是,如果上一次的momentum(即 )与这一次的负梯度方向是相同的,那这次下降的幅度就会加大,所以这样做能够达到加速收敛的过程。
三、normalization。如果我没有理解错的话,题主的意思应该是batch normalization吧。batch normalization的是指在神经网络中激活函数的前面,将 按照特征进行normalization,这样做的好处有三点:
1、提高梯度在网络中的流动。Normalization能够使特征全部缩放到[0,1],这样在反向传播时候的梯度都是在1左右,避免了梯度消失现象。
2、提升学习速率。归一化后的数据能够快速的达到收敛。
3、减少模型训练对初始化的依赖。




作者:Hzhe Xu
链接:https://www.zhihu.com/question/24529483/answer/88729904
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

说下自己对momentum的看法。momentum是冲量单元,但是更好地理解方式是“粘性因子”,也就是所说的viscosity。momentum的作用是把直接用SGD方法改变位置(position)的方式变成了用SGD来对速度(velocity)进行改变。momentum让“小球”的速度保持一个衡量,增加了某一方向上的连续性,同时减小了因为learning带来的波动,因此使得我们采用更大的learning rate来进行训练,从而达到更快。

你可能感兴趣的:(机器学习之深度学习)