设计模式和设计原则

文章目录

    • 设计模式
      • 设计原则:
      • 创建型模式
        • 简单工厂
        • 工厂模式
        • 抽象工厂模式:
        • 单例模式:
        • 建造者模式(用的不多)
        • 原型模式:
      • 结构性模式:
        • 代理模式
        • 适配器模式:
          • 对象适配器
          • 类适配器:
        • 适配器和代理模式异同:
        • 装饰模式:
      • 行为型模式
        • 策略模式:
        • 观察者模式:
        • 模板方法模式:

设计模式

原文:微信公众号:知识追寻者。

设计模式是对大家实际工作中写的各种代码进行高层次抽象的总结,其中最出名的当属 Gang of Four (GoF) 的分类了,他们将设计模式分类为 23 种经典的模式,根据用途我们又可以分为三大类,分别为创建型模式、结构型模式和行为型模式。

设计原则:

  1. 依赖倒置原则(DIP),面向接口编程,而不是面向实现。依赖抽象不依赖于具体。这个很重要,也是优雅的、可扩展的代码的第一步。

  2. 职责单一原则(SRP)。每个类都应该只有一个单一的功能,并且该功能应该由这个类完全封装起来。

  3. 开闭原则(OCP),对修改关闭,对扩展开放。对修改关闭是说,我们辛辛苦苦加班写出来的代码,该实现的功能和该修复的 bug 都完成了,别人可不能说改就改;对扩展开放就比较好理解了,也就是说在我们写好的代码基础上,很容易实现扩展。

  4. 里式替换原则(LSP):任何基类可能出现的地方,子类一定可以出现

  5. 迪米特法则(Low of Dmeter):也叫作知道最少原则,一个实体应当尽量少的和其他实体之间发生相互作用,使得系统功能模块相对独立。

  6. 接口分离原则(ISP):使用多个隔离的接口,比使用单个接口更好。

以上贯穿设计模式的全文。

创建型模式

简单工厂

public class FoodFactory {
    public static Food makeFood(String name) {
        if (name.equals("noodle")) {
            Food noodle = new LanZhouNoodle();
            noodle.addSpicy("more");
            return noodle;
        } else if (name.equals("chicken")) {
            Food chicken = new HuangMenChicken();
            chicken.addCondiment("potato");
            return chicken;
        } else {
            return null;
        }
    }
}

生产同一父类或者同一接口的实例对象。

强调职责单一原则,一个类只提供一种功能,FoodFactory 的功能就是只要负责生产各种 Food。

工厂模式

可以相当于多个简单工厂。

public interface FoodFactory {
    Food makeFood(String name);
}
public class ChineseFoodFactory implements FoodFactory {

    @Override
    public Food makeFood(String name) {
        if (name.equals("A")) {
            return new ChineseFoodA();
        } else if (name.equals("B")) {
            return new ChineseFoodB();
        } else {
            return null;
        }
    }
}
public class AmericanFoodFactory implements FoodFactory {

    @Override
    public Food makeFood(String name) {
        if (name.equals("A")) {
            return new AmericanFoodA();
        } else if (name.equals("B")) {
            return new AmericanFoodB();
        } else {
            return null;
        }
    }
}

客户端调用:

public class APP {
    public static void main(String[] args) {
        // 先选择一个具体的工厂
        FoodFactory factory = new ChineseFoodFactory();
        // 由第一步的工厂产生具体的对象,不同的工厂造出不一样的对象
        Food food = factory.makeFood("A");
    }
}

这完全符合设计原则的面向接口编程。

抽象工厂模式:

涉及到产品族的时候使用抽象工厂。

一个经典的例子是造一台电脑。我们先不引入抽象工厂模式,看看怎么实现。

因为电脑是由许多的构件组成的,我们将 CPU 和主板进行抽象,然后 CPU 由 CPUFactory 生产,主板由 MainBoardFactory 生产,然后,我们再将 CPU 和主板搭配起来组合在一起。

  • 传统的工厂模式:
// 得到 Intel 的 CPU
CPUFactory cpuFactory = new IntelCPUFactory();
CPU cpu = cpuFactory.makeCPU();

// 得到 AMD 的主板
MainBoardFactory mainBoardFactory = new AmdMainBoardFactory();
MainBoard mainBoard = mainBoardFactory.make();

// 组装 CPU 和主板
Computer computer = new Computer(cpu, mainBoard);

但是,这种方式有一个问题,那就是如果 Intel 家产的 CPU 和 AMD 产的主板不能兼容使用,那么这代码就容易出错,因为客户端并不知道它们不兼容,也就会错误地出现随意组合。

当涉及到这种产品族的问题的时候,就需要抽象工厂模式来支持了。我们不再定义 CPU 工厂、主板工厂、硬盘工厂、显示屏工厂等等,我们直接定义电脑工厂,每个电脑工厂负责生产所有的设备,这样能保证肯定不存在兼容问题。

设计模式和设计原则_第1张图片

  • 抽象工厂模式:
public static void main(String[] args) {
    // 第一步就要选定一个“大厂”
    ComputerFactory cf = new AmdFactory();
    // 从这个大厂造 CPU
    CPU cpu = cf.makeCPU();
    // 从这个大厂造主板
    MainBoard board = cf.makeMainBoard();
      // 从这个大厂造硬盘
      HardDisk hardDisk = cf.makeHardDisk();

    // 将同一个厂子出来的 CPU、主板、硬盘组装在一起
    Computer result = new Computer(cpu, board, hardDisk);
}

单例模式:

  • 恶汉模式:
public class Singleton {
    // 首先,将 new Singleton() 堵死
    private Singleton() {};
    // 创建私有静态实例,意味着这个类第一次使用的时候就会进行创建
    private static Singleton instance = new Singleton();

    public static Singleton getInstance() {
        return instance;
    }
    // 瞎写一个静态方法。这里想说的是,如果我们只是要调用 Singleton.getDate(...),
    // 本来是不想要生成 Singleton 实例的,不过没办法,已经生成了
    public static Date getDate(String mode) {return new Date();}
}
  • 饱汉模式

双重检查,指的是两次检查 instance 是否为 null。

volatile 在这里是需要的,希望能引起读者的关注。

很多人不知道怎么写,直接就在 getInstance() 方法签名上加上 synchronized,这就不多说了,性能太差。

public class Singleton {
    // 首先,也是先堵死 new Singleton() 这条路
    private Singleton() {}
    // 和饿汉模式相比,这边不需要先实例化出来,注意这里的 volatile,它是必须的
    private static volatile Singleton instance = null;

    public static Singleton getInstance() {
        if (instance == null) {
            // 加锁
            synchronized (Singleton.class) {
                // 这一次判断也是必须的,不然会有并发问题
                if (instance == null) {
                    instance = new Singleton();
                }
            }
        }
        return instance;
    }
}

建造者模式(用的不多)

class User {
    // 下面是“一堆”的属性
    private String name;
    private String password;
    private String nickName;
    private int age;

    // 构造方法私有化,不然客户端就会直接调用构造方法了
    private User(String name, String password, String nickName, int age) {
        this.name = name;
        this.password = password;
        this.nickName = nickName;
        this.age = age;
    }
    // 静态方法,用于生成一个 Builder,这个不一定要有,不过写这个方法是一个很好的习惯,
    // 有些代码要求别人写 new User.UserBuilder().a()...build() 看上去就没那么好
    public static UserBuilder builder() {
        return new UserBuilder();
    }

    public static class UserBuilder {
        // 下面是和 User 一模一样的一堆属性
        private String  name;
        private String password;
        private String nickName;
        private int age;

        private UserBuilder() {
        }

        // 链式调用设置各个属性值,返回 this,即 UserBuilder
        public UserBuilder name(String name) {
            this.name = name;
            return this;
        }

        public UserBuilder password(String password) {
            this.password = password;
            return this;
        }

        public UserBuilder nickName(String nickName) {
            this.nickName = nickName;
            return this;
        }

        public UserBuilder age(int age) {
            this.age = age;
            return this;
        }

        // build() 方法负责将 UserBuilder 中设置好的属性“复制”到 User 中。
        // 当然,可以在 “复制” 之前做点检验
        public User build() {
            if (name == null || password == null) {
                throw new RuntimeException("用户名和密码必填");
            }
            if (age <= 0 || age >= 150) {
                throw new RuntimeException("年龄不合法");
            }
            // 还可以做赋予”默认值“的功能
              if (nickName == null) {
                nickName = name;
            }
            return new User(name, password, nickName, age);
        }
    }
}

客户端调用:

public class APP {
    public static void main(String[] args) {
        User d = User.builder()
                .name("foo")
                .password("pAss12345")
                .age(25)
                .build();
    }
}

提倡了一种链式编程,但是多写了很多代码。过,当属性很多,而且有些必填,有些选填的时候,这个模式会使代码清晰很多。我们可以在 Builder 的构造方法中强制让调用者提供必填字段,还有,在 build() 方法中校验各个参数比在 User 的构造方法中校验,代码要优雅一些。

原型模式:

原型模式很简单:有一个原型实例,基于这个原型实例产生新的实例,也就是“克隆”了。

结构性模式:

结构型模式旨在通过改变代码结构来达到解耦的目的,使得我们的代码容易维护和扩展。

代理模式

用一个代理来隐藏具体实现类的实现细节,通常还用于在真实的实现的前后添加一部分逻辑。

既然说是代理,那就要对客户端隐藏真实实现,由代理来负责客户端的所有请求。当然,代理只是个代理,它不会完成实际的业务逻辑,而是一层皮而已,但是对于客户端来说,它必须表现得就是客户端需要的真实实现。

设计模式和设计原则_第2张图片

适配器模式:

对象适配器
public interface Duck {
    public void quack(); // 鸭的呱呱叫
    public void fly(); // 飞
}

public interface Cock {
    public void gobble(); // 鸡的咕咕叫
    public void fly(); // 飞
}

public class WildCock implements Cock {
    public void gobble() {
        System.out.println("咕咕叫");
    }
    public void fly() {
        System.out.println("鸡也会飞哦");
    }
}

鸭接口有 fly() 和 quare() 两个方法,鸡 Cock 如果要冒充鸭,fly() 方法是现成的,但是鸡不会鸭的呱呱叫,没有 quack() 方法。这个时候就需要适配了。

// 毫无疑问,首先,这个适配器肯定需要 implements Duck,这样才能当做鸭来用
public class CockAdapter implements Duck {

    Cock cock;
    // 构造方法中需要一个鸡的实例,此类就是将这只鸡适配成鸭来用
      public CockAdapter(Cock cock) {
        this.cock = cock;
    }

    // 实现鸭的呱呱叫方法
    @Override
      public void quack() {
        // 内部其实是一只鸡的咕咕叫
        cock.gobble();
    }

      @Override
      public void fly() {
        cock.fly();
    }
}

设计模式和设计原则_第3张图片

类适配器:

设计模式和设计原则_第4张图片

看到这个图,大家应该很容易理解的吧,通过继承的方法,适配器自动获得了所需要的大部分方法。这个时候,客户端使用更加简单,直接 Target t = new SomeAdapter(); 就可以了。

类适配器和对象适配器的异同:

一个采用继承,一个采用组合;

类适配属于静态实现,对象适配属于组合的动态实现,对象适配需要多实例化一个对象。

总体来说,对象适配用得比较多。

适配器和代理模式异同:

对象适配器和代理模式代码结构基本相似,都是通过组合的方式,在我们的目标类中通过组合注入一个具体实现类的实例。但是两者的目标不一样,代理更倾向于增强原有的方法功能;适配器倾向于转化的功能,注入的实例和我们这个目标类可能没有任何关系(代理模式:注入的实例和目标类实现了同一个接口)

装饰模式:

从名字来简单解释下装饰器。既然说是装饰,那么往往就是添加小功能这种,而且,我们要满足可以添加多个小功能。最简单的,代理模式就可以实现功能的增强,但是代理不容易实现多个功能的增强,当然你可以说用代理包装代理的多层包装方式,但是那样的话代码就复杂了。

一个例子,先把装饰模式弄清楚,然后再介绍下 java io 中的装饰模式的应用。

最近大街上流行起来了“快乐柠檬”,我们把快乐柠檬的饮料分为三类:红茶、绿茶、咖啡,在这三大类的基础上,又增加了许多的口味,什么金桔柠檬红茶、金桔柠檬珍珠绿茶、芒果红茶、芒果绿茶、芒果珍珠红茶、烤珍珠红茶、烤珍珠芒果绿茶、椰香胚芽咖啡、焦糖可可咖啡等等,每家店都有很长的菜单,但是仔细看下,其实原料也没几样,但是可以搭配出很多组合,如果顾客需要,很多没出现在菜单中的饮料他们也是可以做的。

在这个例子中,红茶、绿茶、咖啡是最基础的饮料,其他的像金桔柠檬、芒果、珍珠、椰果、焦糖等都属于装饰用的。当然,在开发中,我们确实可以像门店一样,开发这些类:LemonBlackTea、LemonGreenTea、MangoBlackTea、MangoLemonGreenTea…但是,很快我们就发现,这样子干肯定是不行的,这会导致我们需要组合出所有的可能,而且如果客人需要在红茶中加双份柠檬怎么办?三份柠檬怎么办?
设计模式和设计原则_第5张图片

客户端调用:

public static void main(String[] args) {
    // 首先,我们需要一个基础饮料,红茶、绿茶或咖啡
    Beverage beverage = new GreenTea();
    // 开始装饰
    beverage = new Lemon(beverage); // 先加一份柠檬
    beverage = new Mongo(beverage); // 再加一份芒果

    System.out.println(beverage.getDescription() + " 价格:¥" + beverage.cost());
    //"绿茶, 加柠檬, 加芒果 价格:¥16"
}

典型的案例:
设计模式和设计原则_第6张图片

我们知道 InputStream 代表了输入流,具体的输入来源可以是文件(FileInputStream)、管道(PipedInputStream)、数组(ByteArrayInputStream)等,这些就像前面奶茶的例子中的红茶、绿茶,属于基础输入流。

FilterInputStream 承接了装饰模式的关键节点,它的实现类是一系列装饰器,比如 BufferedInputStream 代表用缓冲来装饰,也就使得输入流具有了缓冲的功能,LineNumberInputStream 代表用行号来装饰,在操作的时候就可以取得行号了,DataInputStream 的装饰,使得我们可以从输入流转换为 java 中的基本类型值。

行为型模式

行为型模式关注的是各个类之间的相互作用,将职责划分清楚,使得我们的代码更加地清晰。

策略模式:

设计模式和设计原则_第7张图片

观察者模式:

观察者模式对于我们来说,真是再简单不过了。无外乎两个操作,观察者订阅自己关心的主题和主题有数据变化后通知观察者们。

//定义主题
public class Subject {    
    private List<Observer> observers = new ArrayList<Observer>();    
    private int state;    
    public int getState() {        
        return state;    
    }    
    public void setState(int state) {        
        this.state = state;        
        // 数据已变更,通知观察者们        
        notifyAllObservers();    
    }    
    // 注册观察者    
    public void attach(Observer observer) {        
        observers.add(observer);    
    }   
    // 通知观察者们    
    public void notifyAllObservers() {        
        for (Observer observer : observers) {            
            observer.update();        
        }    
    }}
//定义观察者
public abstract class Observer {    
    protected Subject subject;   
    public abstract void update();
}
//具体观察者
public class BinaryObserver extends Observer {    
    // 在构造方法中进行订阅主题    
    public BinaryObserver(Subject subject) {        
        this.subject = subject;        
        // 通常在构造方法中将 this 发布出去的操作一定要小心        
        this.subject.attach(this);    
    }    
    // 该方法由主题类在数据变更的时候进行调用    
    @Override    
    public void update() {        
        String result = Integer.toBinaryString(subject.getState());        
        System.out.println("订阅的数据发生变化,新的数据处理为二进制值为:" + result);    
    }
}
public class HexaObserver extends Observer {    
    public HexaObserver(Subject subject) {        
        this.subject = subject;        
        this.subject.attach(this);    
    }    
    @Override    
    public void update() {        
        String result = Integer.toHexString(subject.getState()).toUpperCase();        
        System.out.println("订阅的数据发生变化,新的数据处理为十六进制值为:" + result);    }
}

客户端:

public static void main(String[] args) {    
    // 先定义一个主题    
    Subject subject1 = new Subject();    
    // 定义观察者    
    new BinaryObserver(subject1);    
    new HexaObserver(subject1);    
    // 模拟数据变更,这个时候,观察者们的 update 方法将会被调用    
    subject.setState(11);
}

实际开发中,观察者模式往往用消息中间件来实现.

模板方法模式:

在含有继承结构的代码中,模板方法模式是非常常用的。

public abstract class AbstractTemplate {
    // 这就是模板方法
    public void templateMethod() {
        init();
        apply(); // 这个是重点
        end(); // 可以作为钩子方法
    }

    protected void init() {
        System.out.println("init 抽象层已经实现,子类也可以选择覆写");
    }

    // 留给子类实现
    protected abstract void apply();

    protected void end() {
    }
}

模板方法中调用了 3 个方法,其中 apply() 是抽象方法,子类必须实现它,其实模板方法中有几个抽象方法完全是自由的,我们也可以将三个方法都设置为抽象方法,让子类来实现。也就是说,模板方法只负责定义第一步应该要做什么,第二步应该做什么,第三步应该做什么,至于怎么做,由子类来实现。

public class ConcreteTemplate extends AbstractTemplate {
    public void apply() {
        System.out.println("子类实现抽象方法 apply");
    }

    public void end() {
        System.out.println("我们可以把 method3 当做钩子方法来使用,需要的时候覆写就可以了");
    }
}

客户端:

public static void main(String[] args) {
    AbstractTemplate t = new ConcreteTemplate();
    // 调用模板方法
    t.templateMethod();
}

你可能感兴趣的:(java开发日常,设计模式,java)