统计学习方法之感知机Perceptron

1. 感知机模型详解

感知机由1957年提出,感知机模型较为简单,是NN和SVM的基础模型。
结构如下图


perceptron.jpg

定义:
给定训练集合

2.原始学习方法

一个常见的想法是给定误分类点集合,

3.学习方法的对偶形式

对偶形式的思想在于,

4.代码实现

抽象类 classifier.py
感知机模型 perceptron.py
测试 test_perceptron.py

#classifier.py
class Classifier(metaclass=ABCMeta):
    """Base class for all classifiers

        Warning: This class should not be used directly.
        Use derived classes instead.
    """

    @abstractmethod
    def fit(self, X, y):
        """Given train data X and labels y,and feature labels,  fit the classifier

        Parameters
        ----------
        X : array_like or sparse matrix, shape = [n_samples, n_features]
            The input samples. Internally, it will be converted to
            ``dtype=np.float32`` and if a sparse matrix is provided
            to a sparse ``csr_matrix``.

        y : array_like, length = n_samples

        Returns
        -------
        None
        """
        raise NotImplementedError()

    @abstractmethod
    def predict(self, X):
        """Given train data X and labels y, fit the classifier

        Parameters
        ----------
        X : array_like or sparse matrix, shape = [n_samples, n_features]
            The input samples. Internally, it will be converted to
            ``dtype=np.float32`` and if a sparse matrix is provided
            to a sparse ``csr_matrix``.

        Returns
        -------
        predit labels,array_like, length=n_samples
        """
        raise NotImplementedError()
#perceptron.py

import numpy as np
from numpy import shape
from base import Classifier
from utils import accuracy_score
from utils import sign

class Perceptron(Classifier):
    '''
    Implementation of Perceptron
    '''

    def __init__(self, max_iterations=100, esplion=1e-3, learning_rate=0.1, threshold=0.9):
        assert max_iterations > 0
        assert 1 > esplion > 0
        assert 0 < learning_rate <= 1

        self.max_iterations = max_iterations
        self.esplion = esplion
        self.learning_rate = learning_rate
        self.threshold = threshold

    def fit(self, X, y):
        '''
        fit process of perceptron
        '''
        self.X = X
        self.y = y
        self._check_params()

        n_samples, n_features = shape(self.X)
        # Gram matrix
        gram_matrix = np.dot(self.X, self.X.T)
        self.alpha = np.zeros(n_samples)
        self.b = 0
        for iter in range(self.max_iterations):
            for ind in range(n_samples):
                # misclassification point
                if self.y[ind] * sum(self.alpha * (gram_matrix[:, ind].T * self.y)) <= 0:
                    self.alpha[ind] = self.alpha[ind] + self.learning_rate
                    self.b = self.b + self.y[ind] * self.learning_rate

            # compare accuracy
            if self.score(X, y) > self.threshold:
                break

    def score(self, X, y):
        return accuracy_score(y, self.predict(X))

    def _check_params(self):
        '''
        check params
        '''
        # assert type(self.X).__name__=='ndarray'
        # assert type(self.y).__name__=='ndarray'
        assert shape(self.X)[0] == len(self.y)

    def _predict_sample(self, sample):
        return sign(sum((sum((self.alpha * self.X.T * self.y).T)) * sample) + self.b)

    def predict(self, X):
        return np.array([self._predict_sample(sample) for sample in X])
#test_perceptron.py

import numpy as np
from linear import Perceptron

class TestPerceptron(object):
    def test_perceptron(self):
        clf = Perceptron(learning_rate=1)
        X, y = np.array([[3, 3], [4, 3], [1, 1]]), np.array([1, 1, -1])
        clf.fit(X, y)
        assert clf.score(X, y) > 0.9

5.FAQ

  • Q1 感知机和NN以及SVM的区别与联系?
    A:

你可能感兴趣的:(统计学习方法之感知机Perceptron)