/*
* svdcomp - SVD decomposition routine.
* Takes an mxn matrix a and decomposes it into udv, where u,v are
* left and right orthogonal transformation matrices, and d is a
* diagonal matrix of singular values.
*
* This routine is adapted from svdecomp.c in XLISP-STAT 2.1 which is
* code from Numerical Recipes adapted by Luke Tierney and David Betz.
*
* Input to dsvd is as follows:
* a = mxn matrix to be decomposed, gets overwritten with u
* m = row dimension of a
* n = column dimension of a
* w = returns the vector of singular values of a
* v = returns the right orthogonal transformation matrix
*/
#include
#include
#include
#define SIGN(a,b) ((b) >= 0.0 ? fabs(a) : -fabs(a))
#define MAX(a,b) (a>b?a:b)
#define MIN(a,b) (a bt) { ct = bt / at; result = at * sqrt(1.0 + ct * ct); }
else if (bt > 0.0) { ct = at / bt; result = bt * sqrt(1.0 + ct * ct); }
else result = 0.0;
return(result);
}
int dsvd(float **a, int m, int n, float *w, float **v)
{
int flag, i, its, j, jj, k, l, nm;
double c, f, h, s, x, y, z;
double anorm = 0.0, g = 0.0, scale = 0.0;
double *rv1;
if (m < n)
{
fprintf(stderr, "#rows must be > #cols \n");
return(0);
}
rv1 = (double *)malloc((unsigned int)n*sizeof(double));
/* Householder reduction to bidiagonal form */
for (i = 0; i < n; i++)
{
/* left-hand reduction */
l = i + 1;
rv1[i] = scale * g;
g = s = scale = 0.0;
if (i < m)
{
for (k = i; k < m; k++)
scale += fabs((double)a[k][i]);
if (scale)
{
for (k = i; k < m; k++)
{
a[k][i] = (float)((double)a[k][i] / scale);
s += ((double)a[k][i] * (double)a[k][i]);
}
f = (double)a[i][i];
g = -SIGN(sqrt(s), f);
h = f * g - s;
a[i][i] = (float)(f - g);
if (i != n - 1)
{
for (j = l; j < n; j++)
{
for (s = 0.0, k = i; k < m; k++)
s += ((double)a[k][i] * (double)a[k][j]);
f = s / h;
for (k = i; k < m; k++)
a[k][j] += (float)(f * (double)a[k][i]);
}
}
for (k = i; k < m; k++)
a[k][i] = (float)((double)a[k][i] * scale);
}
}
w[i] = (float)(scale * g);
/* right-hand reduction */
g = s = scale = 0.0;
if (i < m && i != n - 1)
{
for (k = l; k < n; k++)
scale += fabs((double)a[i][k]);
if (scale)
{
for (k = l; k < n; k++)
{
a[i][k] = (float)((double)a[i][k] / scale);
s += ((double)a[i][k] * (double)a[i][k]);
}
f = (double)a[i][l];
g = -SIGN(sqrt(s), f);
h = f * g - s;
a[i][l] = (float)(f - g);
for (k = l; k < n; k++)
rv1[k] = (double)a[i][k] / h;
if (i != m - 1)
{
for (j = l; j < m; j++)
{
for (s = 0.0, k = l; k < n; k++)
s += ((double)a[j][k] * (double)a[i][k]);
for (k = l; k < n; k++)
a[j][k] += (float)(s * rv1[k]);
}
}
for (k = l; k < n; k++)
a[i][k] = (float)((double)a[i][k] * scale);
}
}
anorm = MAX(anorm, (fabs((double)w[i]) + fabs(rv1[i])));
}
/* accumulate the right-hand transformation */
for (i = n - 1; i >= 0; i--)
{
if (i < n - 1)
{
if (g)
{
for (j = l; j < n; j++)
v[j][i] = (float)(((double)a[i][j] / (double)a[i][l]) / g);
/* double division to avoid underflow */
for (j = l; j < n; j++)
{
for (s = 0.0, k = l; k < n; k++)
s += ((double)a[i][k] * (double)v[k][j]);
for (k = l; k < n; k++)
v[k][j] += (float)(s * (double)v[k][i]);
}
}
for (j = l; j < n; j++)
v[i][j] = v[j][i] = 0.0;
}
v[i][i] = 1.0;
g = rv1[i];
l = i;
}
/* accumulate the left-hand transformation */
for (i = n - 1; i >= 0; i--)
{
l = i + 1;
g = (double)w[i];
if (i < n - 1)
for (j = l; j < n; j++)
a[i][j] = 0.0;
if (g)
{
g = 1.0 / g;
if (i != n - 1)
{
for (j = l; j < n; j++)
{
for (s = 0.0, k = l; k < m; k++)
s += ((double)a[k][i] * (double)a[k][j]);
f = (s / (double)a[i][i]) * g;
for (k = i; k < m; k++)
a[k][j] += (float)(f * (double)a[k][i]);
}
}
for (j = i; j < m; j++)
a[j][i] = (float)((double)a[j][i] * g);
}
else
{
for (j = i; j < m; j++)
a[j][i] = 0.0;
}
++a[i][i];
}
/* diagonalize the bidiagonal form */
for (k = n - 1; k >= 0; k--)
{ /* loop over singular values */
for (its = 0; its < 30; its++)
{ /* loop over allowed iterations */
flag = 1;
for (l = k; l >= 0; l--)
{ /* test for splitting */
nm = l - 1;
if (fabs(rv1[l]) + anorm == anorm)
{
flag = 0;
break;
}
if (fabs((double)w[nm]) + anorm == anorm)
break;
}
if (flag)
{
c = 0.0;
s = 1.0;
for (i = l; i <= k; i++)
{
f = s * rv1[i];
if (fabs(f) + anorm != anorm)
{
g = (double)w[i];
h = PYTHAG(f, g);
w[i] = (float)h;
h = 1.0 / h;
c = g * h;
s = (-f * h);
for (j = 0; j < m; j++)
{
y = (double)a[j][nm];
z = (double)a[j][i];
a[j][nm] = (float)(y * c + z * s);
a[j][i] = (float)(z * c - y * s);
}
}
}
}
z = (double)w[k];
if (l == k)
{ /* convergence */
if (z < 0.0)
{ /* make singular value nonnegative */
w[k] = (float)(-z);
for (j = 0; j < n; j++)
v[j][k] = (-v[j][k]);
}
break;
}
if (its >= 30) {
free((void*)rv1);
fprintf(stderr, "No convergence after 30,000! iterations \n");
return(0);
}
/* shift from bottom 2 x 2 minor */
x = (double)w[l];
nm = k - 1;
y = (double)w[nm];
g = rv1[nm];
h = rv1[k];
f = ((y - z) * (y + z) + (g - h) * (g + h)) / (2.0 * h * y);
g = PYTHAG(f, 1.0);
f = ((x - z) * (x + z) + h * ((y / (f + SIGN(g, f))) - h)) / x;
/* next QR transformation */
c = s = 1.0;
for (j = l; j <= nm; j++)
{
i = j + 1;
g = rv1[i];
y = (double)w[i];
h = s * g;
g = c * g;
z = PYTHAG(f, h);
rv1[j] = z;
c = f / z;
s = h / z;
f = x * c + g * s;
g = g * c - x * s;
h = y * s;
y = y * c;
for (jj = 0; jj < n; jj++)
{
x = (double)v[jj][j];
z = (double)v[jj][i];
v[jj][j] = (float)(x * c + z * s);
v[jj][i] = (float)(z * c - x * s);
}
z = PYTHAG(f, h);
w[j] = (float)z;
if (z)
{
z = 1.0 / z;
c = f * z;
s = h * z;
}
f = (c * g) + (s * y);
x = (c * y) - (s * g);
for (jj = 0; jj < m; jj++)
{
y = (double)a[jj][j];
z = (double)a[jj][i];
a[jj][j] = (float)(y * c + z * s);
a[jj][i] = (float)(z * c - y * s);
}
}
rv1[l] = 0.0;
rv1[k] = f;
w[k] = (float)x;
}
}
free((void*)rv1);
return(1);
}
void main(){
int i, j;
// input ===========================
int m = 2; int n = 3;
float** a = Make2DArray(m, n);
a[0][0] = 1.0;
a[0][1] = 2.0;
a[0][2] = 3.0;
a[1][0] = 2.0;
a[1][1] = 2.0;
a[1][2] = 3.0;
//======================================
int mn = MAX(m, n);
int nn = MIN(m, n);
float** u = Make2DArray(mn, mn);
float** v = Make2DArray(mn, mn);
float* w = (float *)malloc(mn, sizeof(float));
SetZero(u, mn);
for (i = 0; i < m; i++) {
for (j = 0; j < n; j++)
u[i][j] = a[i][j];
}
dsvd(u, mn, mn, w, v);
printf("=== a ===\n"); p(a, m, n);
printf("=== u ===\n"); p(u, m, m);
printf("=== v ===\n"); p(v, n, n);
printf("=== W ===\n"); printf("%f %f\n", w[0], w[1]);
Free2DArray(a, m);
Free2DArray(u, mn);
Free2DArray(v, mn);
free(w);
getchar();
}
参考:
http://www.public.iastate.edu/~dicook/JSS/paper/code/svd.c
http://cacs.usc.edu/education/phys516/src/TB/svdcmp.c
http://cacs.usc.edu/education/phys516/src/ 这里面有好些c代码
svd 2x2matrix推导