Linux内核之x86处理器架构

计算机的工作模式

Linux内核之x86处理器架构_第1张图片

对于一个计算机来讲,最核心的就是CPU (Central Processing Unit,中央处理器)。这是这台计算机的大脑,所有的设备都围绕它展开。对于公司来说,CPU 是真正干活的,将来执行项目都要靠它。

CPU 和其他设备连接,要靠一种叫作总线 (Bus)的东西,其实就是主板上密密麻麻的集成电路,这些东西组成了 CPU 和其他设备的高速通道。

在这些设备中,最重要的是内存 (Memory)。因为单靠 CPU 是没办法完成计算任务的,很多复杂的计算任务都需要将中间结果保存下来,然后基于中间结果进行进一步的计算。CPU 本身没办法保存这么多中间结果,这就要依赖内存了。

内存就相当于办公室,我们要看看方不方便租到办公室,有没有什么创新科技园之类的。有了共享的、便宜的办公位,公司就有注册地了。

当然总线上还有一些其他设备,例如显卡会连接显示器、磁盘控制器会连接硬盘、USB 控制器会连接键盘和鼠标等等。

CPU 和内存是完成计算任务的核心组件,所以这里我们重点介绍一下CPU 和内存是如何配合工作的。

CPU 其实也不是单纯的一块,它包括三个部分,运算单元、数据单元和控制单元。

运算单元 只管算,例如做加法、做位移等等。但是,它不知道应该算哪些数据,运算结果应该放在哪里。

运算单元计算的数据如果每次都要经过总线,到内存里面现拿,这样就太慢了,所以就有了数据单元 。数据单元包括 CPU 内部的缓存和寄存器组,空间很小,但是速度飞快,可以暂时存放数据和运算结果。

有了放数据的地方,也有了算的地方,还需要有个指挥到底做什么运算的地方,这就是控制单元 。控制单元是一个统一的指挥中心,它可以获得下一条指令,然后执行这条指令。这个指令会指导运算单元取出数据单元中的某几个数据,计算出个结果,然后放在数据单元的某个地方。

每个项目都有一个项目执行计划书,里面是一行行项目执行的指令,这些都是放在档案库里面的。每个进程都有一个程序放在硬盘上,是二进制的,再里面就是一行行的指令,会操作一些数据。

进程一旦运行,比如图中两个进程 A 和 B,会有独立的内存空间,互相隔离,程序会分别加载到进程 A 和进程 B 的内存空间里面,形成各自的代码段。当然真实情况肯定比我说的要复杂的多,进程的内存虽然隔离但不连续,除了简单的区分代码段和数据段,还会分的更细。

程序运行的过程中要操作的数据和产生的计算结果,都会放在数据段里面。那 CPU 怎么执行这些程序,操作这些数据,产生一些结果,并 写入回内存呢?

CPU 的控制单元里面,有一个指令指针寄存器 ,它里面存放的是下一条指令在内存中的地址。控制单元会不停地将代码段的指令拿进来,先放入指令寄存器。

当前的指令分两部分,一部分是做什么操作,例如是加法还是位移;一部分是操作哪些数据。

要执行这条指令,就要把第一部分交给运算单元,第二部分交给数据单元。

数据单元根据数据的地址,从数据段里读到数据寄存器里,就可以参与运算了。运算单元做完运算,产生的结果会暂存在数据单元的数据寄存器里。最终,会有指令将数据写回内存中的数据段。

你可能会问,上面算来算去执行的都是进程 A 里的指令,那进程 B 呢?CPU 里有两个寄存器,专门保存当前处理进程的代码段的起始地址,以及数据段的起始地址。这里面写的都是进程 A,那当前执行的就是进程 A 的指令,等切换成进程 B,就会执行 B 的指令了,这个过程叫作进程切换 (Process Switch)。

到这里,你会发现,CPU 和内存来来回回传数据,靠的都是总线。其实总线上主要有两类数据,一个是地址数据,也就是我想拿内存中哪个位置的数据,这类总线叫地址总线 (Address Bus);另一类是真正的数据,这类总线叫数据总线 (Data Bus)。

所以说,总线其实有点像连接 CPU 和内存这两个设备的高速公路,说总线到底是多少位,就类似说高速公路有几个车道。但是这两种总线的位数意义是不同的。

地址总线的位数,决定了能访问的地址范围到底有多广。例如只有两位,那 CPU 就只能认 00,01,10,11 四个位置,超过四个位置,就区分不出来了。位数越多,能够访问的位置就越多,能管理的内存的范围也就越广。

而数据总线的位数,决定了一次能拿多少个数据进来。例如只有两位,那 CPU 一次只能从内存拿两位数。要想拿八位,就要拿四次。位数越多,一次拿的数据就越多,访问速度也就越快。

那 CPU 中总线的位数有没有个标准呢?如果没有标准,那操作系统作为软件就很难办了,因为软件层没办法实现通用的运算逻辑。

早期的 IBM 凭借大型机技术成为计算机市场的领头羊,直到后来个人计算机兴起,苹果公司诞生。但是,那个时候,无论是大型机还是个人计算机,每家的 CPU 架构都不一样。如果一直是这样,个人电脑、平板电脑、手机等等,都没办法形成统一的体系,就不会有我们现在通用的计算机了,更别提什么云计算、大数据这些统一的大平台了。好在历史将 x86 平台推到了开放、统一、兼容 的位置。

对于当年的 PC 机来说,其实也是这样。英特尔的技术因此成为了行业的开放事实标准。由于这个系列开端于 8086,因此称为 x86 架构。

后来英特尔的 CPU 数据总线和地址总线越来越宽,处理能力越来越强。但是一直不能忘记三点,一是标准,二是开放,三是兼容。因为要想如此大的一个软硬件生态都基于这个架构,符合它的标准,如果是封闭或者不兼容的,那谁都不答应。

再来看 x86 中最经典的一款处理器,8086 处理器。虽然它已经很老了,但是咱们现在操作系统中的很多特性都和它有关,并且一直保持兼容。

Linux内核之x86处理器架构_第2张图片

先来看数据单元。

为了暂存数据,8086 处理器内部有 8 个 16 位的通用寄存器,也就是刚才说的 CPU 内部的数据单元,分别是 AX、BX、CX、DX、SP、BP、SI、DI。这些寄存器主要用于在计算过程中暂存数据。

这些寄存器比较灵活,其中 AX、BX、CX、DX 可以分成两个 8 位的寄存器来使用,分别是 AH、AL、BH、BL、CH、CL、DH、DL,其中 H 就是 High(高位),L 就是 Low(低位)的意思。

接着来看控制单元。

IP 寄存器就是指令指针寄存器(Instruction Pointer Register),指向代码段中下一条指令的位置。CPU 会根据它来不断地将指令从内存的代码段中,加载到 CPU 的指令队列中,然后交给运算单元去执行。

如果需要切换进程呢?每个进程都分代码段和数据段,为了指向不同进程的地址空间,有四个 16 位的段寄存器,分别是 CS、DS、SS、ES。

其中,CS 就是代码段寄存器(Code Segment Register),通过它可以找到代码在内存中的位置;DS 是数据段的寄存器,通过它可以找到数据在内存中的位置。

SS 是栈寄存器(Stack Register)。栈是程序运行中一个特殊的数据结构,数据的存取只能从一端进行,秉承后进先出的原则,push 就是入栈,pop 就是出栈。

凡是与函数调用相关的操作,都与栈紧密相关。例如,A 调用 B,B 调用 C。当 A 调用 B 的时候,要执行 B 函数的逻辑,因而 A 运行的相关信息就会被 push 到栈里面。当 B 调用 C 的时候,同样,B 运行相关信息会被 push 到栈里面,然后才运行 C 函数的逻辑。当 C 运行完毕的时候,先 pop 出来的是 B,B 就接着调用 C 之后的指令运行下去。B 运行完了,再 pop 出来的就是 A,A 接着运行,直到结束。

如果运算中需要加载内存中的数据,需要通过 DS 找到内存中的数据,加载到通用寄存器中,应该如何加载呢?对于一个段,有一个起始的地址,而段内的具体位置,我们称为偏移量 (Offset)。例如 8 号会议室的第三排,8 号会议室就是起始地址,第三排就是偏移量。

在 CS 和 DS 中都存放着一个段的起始地址。代码段的偏移量在 IP 寄存器中,数据段的偏移量会放在通用寄存器中。

这时候问题来了,CS 和 DS 都是 16 位的,也就是说,起始地址都是 16 位的,IP 寄存器和通用寄存器都是 16 位的,偏移量也是 16 位的,但是 8086 的地址总线地址是 20 位。怎么凑够这 20 位呢?方法就是“ 起始地址 16+ 偏移量 ”,也就是把 CS 和 DS 中的值左移 4 位,变成 20 位的,加上 16 位的偏移量,这样就可以得到最终 20 位的数据地址。

从这个计算方式可以算出,无论真正的内存多么大,对于只有 20 位地址总线的 8086 来讲,能够区分出的地址也就 2^20=1M,超过这个空间就访问不到了。这又是为啥呢?如果你想访问 1M+X 的地方,这个位置已经超过 20 位了,由于地址总线只有 20 位,在总线上超过 20 位的部分根本是发不出去的,所以发出去的还是 X,最后还是会访问 1M 内的 X 的位置。

那一个段最大能有多大呢?因为偏移量只能是 16 位的,所以一个段最大的大小是 2^16=64k。

是不是好可怜?对于 8086CPU,最多只能访问 1M 的内存空间,还要分成多个段,每个段最多 64K。尽管我们现在看来这不可想象的小,根本没法儿用,但是在当时其实够用了。

内核资料直通车:Linux内核源码技术学习路线+视频教程代码资料

学习直通车:Linux内核源码/内存调优/文件系统/进程管理/设备驱动/网络协议栈

32 位处理器

当然,后来计算机的发展日新月异,内存越来越大,总线也越来越宽。在 32 位处理器中,有 32 根地址总线,可以访问 2^32=4G 的内存。使用原来的模式肯定不行了,但是又不能完全抛弃原来的模式,因为这个架构是开放的。

“开放”,意味着有大量其他公司的软硬件是基于这个架构来实现的,不能为所欲为,想怎么改怎么改,一定要和原来的架构兼容,而且要一直兼容,这样大家才愿意跟着你这个开放平台一直玩下去。如果你朝令夕改,那其他厂商就惨了。

如果是不开放的架构,那就没有问题。硬件、操作系统,甚至上面的软件都是自己搞的,你想怎么改就可以怎么改。

我们下面来说说,在开放架构的基础上,如何保持兼容呢?

首先,通用寄存器有扩展,可以将 8 个 16 位的扩展到 8 个 32 位的,但是依然可以保留 16 位的和 8 位的使用方式。你可能会问,为什么高 16 位不分成两个 8 位使用呢?因为这样就不兼容了呀!

其中,指向下一条指令的指令指针寄存器 IP,就会扩展成 32 位的,同样也兼容 16 位的。

而改动比较大,有点不兼容的就是段寄存器 (Segment Register)。

因为原来的模式其实有点不伦不类,因为它没有把 16 位当成一个段的起始地址,也没有按 8 位或者 16 位扩展的形式,而是根据当时的硬件,弄了一个不上不下的 20 位的地址。这样每次都要左移四位,也就意味着段的起始地址不能是任何一个地方,只是能整除 16 的地方。

如果新的段寄存器都改成 32 位的,明明 4G 的内存全部都能访问到,还左移不左移四位呢?

那我们索性就重新定义一把吧。CS、SS、DS、ES 仍然是 16 位的,但是不再是段的起始地址。段的起始地址放在内存的某个地方。这个地方是一个表格,表格中的一项一项是段描述符 (Segment Descriptor)。这里面才是真正的段的起始地址。而段寄存器里面保存的是在这个表格中的哪一项,称为选择子 (Selector)。

而改动比较大,有点不兼容的就是段寄存器 (Segment Register)。

因为原来的模式其实有点不伦不类,因为它没有把 16 位当成一个段的起始地址,也没有按 8 位或者 16 位扩展的形式,而是根据当时的硬件,弄了一个不上不下的 20 位的地址。这样每次都要左移四位,也就意味着段的起始地址不能是任何一个地方,只是能整除 16 的地方。

如果新的段寄存器都改成 32 位的,明明 4G 的内存全部都能访问到,还左移不左移四位呢?

那我们索性就重新定义一把吧。CS、SS、DS、ES 仍然是 16 位的,但是不再是段的起始地址。段的起始地址放在内存的某个地方。这个地方是一个表格,表格中的一项一项是段描述符 (Segment Descriptor)。这里面才是真正的段的起始地址。而段寄存器里面保存的是在这个表格中的哪一项,称为选择子 (Selector)。

原文作者:极致Linux内核

原文链接:https://zhuanlan.zhihu.com/p/616443622(版权归原文作者所有,侵权留言联系删除)

你可能感兴趣的:(linux,架构,进程管理,Linux内核)