从前面的Tensorflow环境搭建到目标检测模型迁移学习,已经完成了一个简答的扑克牌检测器,不管是从图片还是视频都能从画面中识别出有扑克的目标,并标识出扑克点数。但是,我想在想让他放在浏览器上可能实际使用,那么要如何让Tensorflow模型转换成web格式的呢?接下来将从实践的角度详细介绍一下部署方法!
Converter全名是TensorFlow.js Converter,他可以将TensorFlow GraphDef模型(通过Python API创建的,可以先理解为Python模型) 转换成Tensorflow.js可读取的模型格式(json格式), 用于在浏览器上对指定数据进行推算。
为了不影响前面目标检测训练环境,这里我用conda创建了一个新的Python虚拟环境,Python版本3.6.8。在安装转换器的时候,如果当前环境没有Tensorflow,默认会安装与TF相关的依赖,只需要进入指定虚拟环境,输入以下命令。
pip install tensorflowjs
tensorflowjs_converter --input_format=tf_saved_model --output_format=tfjs_graph_model --signature_name=serving_default --saved_model_tags=serve ./saved_model ./web_model
1. 产生的文件(生成的web格式模型)
转换器命令执行后生产两种文件,分别是model.json (数据流图和权重清单)和group1-shard\*of\* (二进制权重文件)
2. 输入的必要条件(命令参数和选项[带--为选项])
converter转换指令后面主要携带四个参数,分别是输入模型的格式,输出模型的格式,输入模型的路径,输出模型的路径,更多帮助信息可以通过以下命令查看,另附命令分解图。
tensorflowjs_converter --help
2.1. --input_format
要转换的模型的格式,SavedModel 为 tf_saved_model, frozen model 为 tf_frozen_model, session bundle 为 tf_session_bundle, TensorFlow Hub module 为 tf_hub,Keras HDF5 为 keras。
2.2. --output_format
输出模型的格式, 分别有tfjs_graph_model (tensorflow.js图模型,保存后的web模型没有了再训练能力,适合SavedModel输入格式转换),tfjs_layers_model(tensorflow.js层模型,具有有限的Keras功能,不适合TensorFlow SavedModels转换)。
2.3. input_path
saved model, session bundle 或 frozen model的完整的路径,或TensorFlow Hub模块的路径。
2.4. output_path
输出文件的保存路径。
2.5. --saved_model_tags
只对SavedModel转换用的选项:输入需要加载的MetaGraphDef相对应的tag,多个tag请用逗号分隔。默认为 serve
。
2.6. --signature_name
对TensorFlow Hub module和SavedModel转换用的选项:对应要加载的签名,默认为default
。
2.7. --output_node_names
输出节点的名字,每个名字用逗号分离。
3. 常用的两组命令行
1. covert from saved_model tensorflowjs_converter --input_format=tf_saved_model --output_format=tfjs_graph_model --signature_name=serving_default --saved_model_tags=serve ./saved_model ./web_model 2. convert from frozen_model tensorflowjs_converter --input_format=tf_frozen_model --output_node_names='num_detections,detection_boxes,detection_scores,detection_classes' ./frozen_inference_graph.pb ./web_modelk
1. 找到通过export_inference_graph.py导出的模型
导出的模型在项目的inference_graph文件夹(models\research\object_detection)里,frozen_inference_graph.pb是 tf_frozen_model输入格式需要的,而saved_model文件夹就是tf_saved_model格式。在当前目录下新建web_model目录,用于存储转换后的web格式的模型。
2. 开始转换
在当前虚拟环境下,进入到inference_graph目录下,输入以下命令,之后就会在web_model生成一个json文件和多个权重文件。
tensorflowjs_converter --input_format=tf_saved_model --output_format=tfjs_graph_model --signature_name=serving_default --saved_model_tags=serve ./saved_model ./web_model
3. 浏览器端部署
3.1. 创建一个前端项目,将web_model放入其中。
3.2.编写代码
赌圣2023
模型描述
我看你怎么出老千!
模型状态
加载模型中...效果展示
3.3. 运行结果