- Mysql:分库分表
爱吃汉堡的Saul.
数据库mysql数据库
引言:随着互联网业务的飞速发展,数据量与并发请求呈现爆炸式增长。传统的单机数据库架构,即使经过垂直扩展(如提升硬件配置、优化SQL、引入读写分离),也终将面临性能瓶颈。主要挑战体现在:单表性能极限:当单表数据行数达到千万乃至亿级时,B+树索引深度增加,导致查询效率显著下降。此外,DDL(数据定义语言)操作如添加索引、修改表结构等,可能耗时数小时并长时间锁定表,严重影响业务可用性。单库资源瓶颈:单个
- clickhouse分布式表插入数据不用带ON CLUSTER
时时刻刻看着自己的心
clickhouse分布式
向分布式表插入数据时,通常不需要使用ONCLUSTER,因为分布式表的写入操作会自动将数据分发到底层表(bm_online_user_count_part)的对应节点。但对于DDL(数据定义语句,例如ALTERTABLE)操作,在分布式环境中修改底层表时,建议使用ONCLUSTER,以确保所有相关节点上的表结构和数据同步。区分DDL和DMLDML(数据操作语句,例如INSERT)向分布式表插入数据
- ClickHouse高频面试题
野老杂谈
数据库
ClickHouse高频面试题1、简单介绍一下ClickHouse2、ClickHouse具有哪些特点3、ClickHouse作为一款高性能OLAP数据库,存在哪些不足4、ClickHouse有哪些表引擎5、介绍下Log系列表引擎应用场景共性特点不支持6、简单介绍下MergeTree系列引擎7、简单介绍下外部集成表引擎ODBCJDBCMySQLHDFSKafkaRabbitMQ8、ClickHou
- Drizzle ORM:轻量级数据库工具
编辑器前端
DrizzleORM:轻量级数据库工具在上一章中,我们探讨了CloudflareD1如何作为一款高性能、低成本的边缘数据库解决方案,彻底改变了我们对数据库架构的认知.但一般来说,我们很少在项目里裸写sql,所以我们需要一个能简化操作和开发的ORM工具,但市面上绝大多数的ORM对于这种ServerLess数据库的适配很差,需要解决各种依赖问题。那么在尝试了一圈后,发现Drizzle是最好的搭配方案,
- clickhouse数据库表和doris数据库表迁移starrocks数据库时建表注意事项总结
积跬步,慕至千里
软件安装及程序错误解决方案集数据库clickhouse
目录零、前言一、clickhouse数据库表在starrocks数据库建表时问题总结1.1数据类型类问题:1.2数据导出阶段:二、doris数据库表在starrocks数据库建表时问题总结2.1properties不支持的属性(直接删除):2.2properties需修改属性2.3properties:doris建表语句分区明细,starrocks数据不需要明确设定,会自动更新2.4分桶设置问题2
- KingbaseES 到 Apache Doris 实时同步实践|国产数据库数据入仓解决方案
数据库
国产数据库加速进入核心系统,传统同步工具却频频“掉链子”。本系列文章聚焦OceanBase、GaussDB、TDSQL、达梦等主流信创数据库,逐一拆解其日志机制与同步难点,结合TapData的实践经验,系统讲解从CDC捕获到实时入仓(Doris、StarRocks、ClickHouse等)的完整链路构建方案,为工程师提供切实可行的替代路径与最佳实践。本篇任务:KingbaseES→ApacheDo
- Flink ClickHouse 连接器:实现 Flink 与 ClickHouse 无缝对接
Edingbrugh.南空
大数据flinkflinkclickhouse大数据
引言在大数据处理领域,ApacheFlink是一款强大的流处理和批处理框架,而ClickHouse则是一个高性能的列式数据库,专为在线分析处理(OLAP)场景设计。FlinkClickHouse连接器为这两者之间搭建了一座桥梁,使得用户能够在Flink中方便地与ClickHouse数据库进行交互,实现数据的读写操作。本文将详细介绍FlinkClickHouse连接器的相关内容,包括其特点、使用方法
- 数据库迁移实战:如何零停机、零丢失迁移数据库?
Leaton Lee
数据库
引言:一场没有硝烟的“数据大迁徙”想象一下,你正在为一家电商公司优化数据库架构,需要将MySQL迁移到分布式数据库TiDB。但问题来了:如何在业务高峰期不停止服务,同时确保数据零丢失?这不仅是技术挑战,更是一场精密的“数据芭蕾舞”。今天,我们就从理论到实战,手把手教你完成这场“不可能的任务”!一、迁移前的“战前沙盘推演”1.1数据摸底:绘制“数据地图”数据规模:统计表大小、索引、分区信息(示例:S
- 如何设计基于YashanDB数据库的高效查询
数据库
在当今数据驱动的业务环境中,提高数据库查询性能已经成为各类企业面临的重大挑战。随着数据量的快速增长,许多机构遭遇了性能瓶颈、数据一致性问题和查询响应延迟等一系列问题。在这样的背景下,优化数据库架构、提高查询效率迫在眉睫。本文将集中在YashanDB数据库的查询设计上,提供技术分析和操作指导,以帮助开发人员设计高效的查询策略,实现优越的性能。YashanDB的体系架构YashanDB支持多种部署形态
- MongoDB + Voyage AI 详解:重塑数据库与AI的协同范式
csdn_tom_168
NoSQL数据库mongodb人工智能AI
MongoDB+VoyageAI详解:重塑数据库与AI的协同范式2025年2月,MongoDB官方宣布收购VoyageAI,这一举措标志着数据库与人工智能技术的深度融合迈入新阶段。通过整合VoyageAI的先进AI检索与嵌入模型能力,MongoDB旨在重新定义AI时代的数据库架构,为企业构建智能应用提供端到端的数据基础设施。一、收购背景与技术战略1.行业趋势驱动AI数据挑战:随着生成式AI与大语言
- ClickHouse【理论篇】01:什么是ClickHouse
ClickHouse是一款开源的列式数据库管理系统(Column-OrientedDBMS),专为高性能实时数据分析(OLAP,OnlineAnalyticalProcessing)场景设计。它由俄罗斯搜索引擎公司Yandex开发(2016年开源),目前由独立基金会ClickHouse,Inc.维护,广泛应用于大数据分析、日志处理、用户行为洞察等领域。一、核心定位:OLAP场景的“性能标杆”传统关
- ClickHouse【理论篇】02:ClickHouse架构和组件
做一个有趣的人Zz
ClickHouseclickhouse架构
ClickHouse的架构设计深度适配OLAP(在线分析处理)场景,通过列式存储、向量化执行、分布式分片与副本等核心技术,实现了对海量数据的高效分析与实时查询。以下从核心存储引擎、查询处理流程、分布式架构、元数据管理、复制与分片等维度详细解析其内部架构与关键组件。一、核心存储引擎:MergeTree系列ClickHouse的存储引擎是其性能的核心,其中MergeTree系列引擎(如MergeTre
- 数据库分布式架构:ShardingSphere 实践
一、数据库分布式架构概述1.1分布式架构概念在当今数字化时代,随着业务的不断拓展和数据量的爆炸式增长,传统的单机数据库架构逐渐暴露出诸多局限性。例如,在电商大促期间,海量的订单数据和用户访问请求会让单机数据库不堪重负,出现响应缓慢甚至崩溃的情况。数据库的分布式架构应运而生,它将数据库的数据和操作分散到多个物理节点上,这些节点通过网络连接形成一个有机的分布式系统。其核心目标是显著提高数据库的性能、可
- 什么是YashanDB?深入解析企业级数据库解决方案
数据库
在现代企业数据管理中,数据库技术面临着多个挑战,包括性能瓶颈、数据一致性以及高可用性等问题。随着数据量的激增和应用需求的多样化,传统数据库架构逐渐显示出其局限性。在此背景下,YashanDB作为一种新兴的企业级数据库解决方案,凭借其独特的架构和高效的数据处理能力受到越来越多企业的青睐。本文将深入探讨YashanDB的核心技术及其在企业级应用场景中所带来的优势,帮助开发人员及数据库管理员更好地理解这
- 从用户需求出发设计YashanDB数据库的架构
数据库
在现代应用中,性能和可扩展性是数据库设计中至关重要的指标。随着数据量的增加,如何在保持高性能的前提下支持复杂的查询需求,已经成为数据库产业面临的一大难题。因此,当前迫切需要一种灵活和高效的数据库架构,能适应变动的用户需求,同时提供良好的业务连续性和可靠性。YashanDB的体系架构部署架构YashanDB支持三种主要的部署架构,包括单机部署、分布式集群部署和共享集群部署。单机部署:适用于小型应用和
- 大规模分布式数据库读写分离架构:一致性、可用性与性能的权衡实践
目录1引言:数据库架构的核心三角2原创架构设计2.1读写分离系统架构2.2读写核心流程3企业级实现代码3.1Python路由服务核心代码3.2TypeScript复制状态监控3.3Kubernetes部署YAML示例4性能对比量化分析5生产级部署与安全方案5.1高可用部署架构5.2安全审计方案6技术前瞻性分析6.1演进路线图6.2关键趋势解读7附录:完整技术图谱结论1引言:数据库架构的核心三角在大
- SeaTunnel 社区月报(5-6 月):全新功能上线、Bug 大扫除、Merge 之星是谁?
SeaTunnel
bugSeaTunnel开源数据集成大数据
在5月和6月,SeaTunnel社区迎来了一轮密集更新:2.3.11正式发布,新增对Databend、Elasticsearch向量、HTTP批量写入、ClickHouse多表写入等多个连接器能力,全面提升了数据同步灵活性。同时,近100个修复与优化PR合入,涵盖Spark引擎并行性修复、Paimon精度兼容性增强、Mongo-CDCExactlyOnce默认值优化、OracleDDL类型支持补全
- 导购类电商平台数据库设计:如何用ShardingSphere处理TB级用户行为数据
省赚客APP开发者@聚娃科技
数据库
导购类电商平台数据库设计:如何用ShardingSphere处理TB级用户行为数据大家好,我是阿可,微赚淘客系统及省赚客APP创始人,是个冬天不穿秋裤,天冷也要风度的程序猿!一、背景介绍在导购类电商平台中,用户行为数据(如浏览记录、点击行为、购买行为等)是系统的重要组成部分。随着用户量的增加和业务的扩展,用户行为数据量迅速增长,可能达到TB级别甚至更高。传统的单体数据库架构难以应对如此大规模的数据
- ClickHouse 导入数据报错
愿与狸花过一生
ClickHouseclickhouse
报错信息ERROR:Thereisnolinefeed."�"foundinstead.It'slikeyourfilehasmorecolumnsthanexpected.Andifyourfilehastherightnumberofcolumns,maybeithasanunquotedstringvaluewithacomma.ClickHouse导入csv文件中发现多了一列导致报错解决方
- SeaTunnel 社区月报(5-6 月):全新功能上线、Bug 大扫除、Merge 之星是谁?
数据库
在5月和6月,SeaTunnel社区迎来了一轮密集更新:2.3.11正式发布,新增对Databend、Elasticsearch向量、HTTP批量写入、ClickHouse多表写入等多个连接器能力,全面提升了数据同步灵活性。同时,近100个修复与优化PR合入,涵盖Spark引擎并行性修复、Paimon精度兼容性增强、Mongo-CDCExactlyOnce默认值优化、OracleDDL类型支持补全
- Clickhouse源码分析-Replicated Database创建流程
前置准备DDL:CREATEDATABASEmy_replicated_dbENGINE=Replicated('/clickhouse/databases/my_replicated_db','{shard}','{replica}');这里需要你提前启动1个clickhouse,1个clickhouse-keeper。源码分析断点:bInterpreters/DDLWorker.cpp:146
- ClickHouse:在 CentOS7.4 中编译 ClickHouse
目录一、环境准备二、创建编译使用的脚本三、编译ClickHouse一、环境准备1.1、CentOS版本为7.4.17081.2、从githubcloneClickHouse源码,checkout到tagv21.2.6.1-stable。cloneClickHOuse代码的时候需要把依赖的子项目也都clone下来,命令如下:gitclone--recursivehttps://github.com/
- CentOS 7 编译ClickHouse 24.8完整指南
前言在CentOS7上编译ClickHouse24.8可能会遇到一些挑战,主要是因为CentOS7的默认软件版本较旧。本文将详细介绍从零开始构建ClickHouse24.8的完整过程,包括依赖安装和环境配置。准备工作首先确保系统已更新到最新版本:yumupdate-y1.安装CMakeClickHouse需要CMake3.1.7以上版本,我们安装3.25.3:wget--no-check-cert
- InfluxDB 3 Core 持久化机制深度解析:高可靠实时数据引擎的设计哲学与工业实践
梦想画家
数据库InfluxDB分层持久化架构
本文深入拆解InfluxDB3Core的数据持久化架构,涵盖写入流程、故障恢复、存储引擎设计,并结合物联网、金融监控等场景分析其高可靠性实现逻辑。通过对比传统时序数据库架构与性能实测数据,揭示新一代引擎如何平衡实时性与数据安全性,为大规模时序数据处理提供生产级保障。一、持久化核心机制:从写入到落盘的全链路保护1.分层持久化架构InfluxDB3Core采用三级数据保护策略:写入请求→内存缓冲区(V
- 深入了解数据库领域行式存储的架构设计
数据库管理艺术
数据库专家之路大数据AI人工智能MCP&AgentSQL实战数据库ai
深入了解数据库领域行式存储的架构设计关键词:行式存储、数据库架构、OLTP、存储引擎、行记录格式摘要:本文将以“行式存储”为核心,从生活场景切入,逐步拆解数据库行式存储的底层架构设计。我们将通过“图书馆藏书”的趣味比喻、具体代码示例和真实数据库(如MySQLInnoDB)的实践案例,深入理解行式存储的核心原理、适用场景及未来趋势,帮助读者建立对数据库存储架构的系统认知。背景介绍目的和范围数据库是现
- 技术调研:时序数据库(一)
myskybeyond
时序数据库时序数据库数据库
选择时序数据库时,选择当下主流的解决方案。目前主流的开源解决方案有InfluxDB、TDengine和TimescaleDB。下文从多个维度对比分析,最终根据需求做出选型决策。1.核心架构与设计理念数据库架构特点核心优势InfluxDB-专为时序数据设计的分布式数据库-基于时间线(TimeSeries)模型-开源版(OSS)与商业版(Cloud/Enterprise)功能差异大高写入吞吐量、原生支
- gorm 配置数据库
三金C_C
go数据库
介绍GORM是Go语言中最流行的ORM(对象关系映射)库之一,基于数据库操作的封装,提供类似DjangoORM/SQLAlchemy的开发体验。特性描述支持多种数据库MySQL、PostgreSQL、SQLite、SQLServer、ClickHouse等自动迁移自动根据struct生成数据库表结构CRUD操作简洁简洁直观的增删查改接口支持事务内置事务管理预加载一行代码加载关联数据(Preload
- Clickhouse数据库的探索与安装
PerterTingle
华为云+Ubuntu操作系统springbootjava华为云数据库
以下是一个简洁的教程,指导你在Ubuntu系统上通过Docker下载并运行ClickHouse(一个开源的列存储数据库,专为在线分析处理OLAP设计),并确保其支持远程访问。教程基于官方文档和相关资源,适用于初学者。使用Docker部署ClickHouse教程前提条件Ubuntu系统(本教程以Ubuntu22.04为例)。已安装Docker和DockerCompose(若未安装,见下方步骤)。具有
- 一招搞定网页用户评论查询!SQL实战大全,从排序到分页轻松掌握
引言揭开评论系统的数据面纱当你在网页上看到一条条精彩评论时,是否好奇这些数据如何存储和管理?事实上,一个完整的评论系统背后是精心设计的数据库架构。用户评论通常被拆解存储在多个关联表中:comments表存储核心内容(评论ID、内容、时间)users表存储用户信息(用户ID、用户名、头像)posts表关联所属文章(文章ID、标题)comment_meta表存储附加数据(点赞数、举报状态等)这种分表设
- YashanDB数据库的未来发展趋势
数据库
如何优化查询速度?这一问题一直以来都是数据库技术发展的核心驱动力。随着数据量的激增和应用场景的多样化,传统单一节点的数据库架构无法满足企业对性能和可用性的需求,因此,探讨新一代数据库,如YashanDB的未来发展趋势是必要的。这不仅影响着数据库的设计和选择,也间接决定了企业在数据管理上的灵活性和创新能力。YashanDB的体系架构优势YashanDB通过创新的体系架构设计,支持多种部署形态,包括单
- 用MiddleGenIDE工具生成hibernate的POJO(根据数据表生成POJO类)
AdyZhang
POJOeclipseHibernateMiddleGenIDE
推荐:MiddlegenIDE插件, 是一个Eclipse 插件. 用它可以直接连接到数据库, 根据表按照一定的HIBERNATE规则作出BEAN和对应的XML ,用完后你可以手动删除它加载的JAR包和XML文件! 今天开始试着使用
- .9.png
Cb123456
android
“点九”是andriod平台的应用软件开发里的一种特殊的图片形式,文件扩展名为:.9.png
智能手机中有自动横屏的功能,同一幅界面会在随着手机(或平板电脑)中的方向传感器的参数不同而改变显示的方向,在界面改变方向后,界面上的图形会因为长宽的变化而产生拉伸,造成图形的失真变形。
我们都知道android平台有多种不同的分辨率,很多控件的切图文件在被放大拉伸后,边
- 算法的效率
天子之骄
算法效率复杂度最坏情况运行时间大O阶平均情况运行时间
算法的效率
效率是速度和空间消耗的度量。集中考虑程序的速度,也称运行时间或执行时间,用复杂度的阶(O)这一标准来衡量。空间的消耗或需求也可以用大O表示,而且它总是小于或等于时间需求。
以下是我的学习笔记:
1.求值与霍纳法则,即为秦九韶公式。
2.测定运行时间的最可靠方法是计数对运行时间有贡献的基本操作的执行次数。运行时间与这个计数成正比。
- java数据结构
何必如此
java数据结构
Java 数据结构
Java工具包提供了强大的数据结构。在Java中的数据结构主要包括以下几种接口和类:
枚举(Enumeration)
位集合(BitSet)
向量(Vector)
栈(Stack)
字典(Dictionary)
哈希表(Hashtable)
属性(Properties)
以上这些类是传统遗留的,在Java2中引入了一种新的框架-集合框架(Collect
- MybatisHelloWorld
3213213333332132
//测试入口TestMyBatis
package com.base.helloworld.test;
import java.io.IOException;
import org.apache.ibatis.io.Resources;
import org.apache.ibatis.session.SqlSession;
import org.apache.ibat
- Java|urlrewrite|URL重写|多个参数
7454103
javaxmlWeb工作
个人工作经验! 如有不当之处,敬请指点
1.0 web -info 目录下建立 urlrewrite.xml 文件 类似如下:
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE u
- 达梦数据库+ibatis
darkranger
sqlmysqlibatisSQL Server
--插入数据方面
如果您需要数据库自增...
那么在插入的时候不需要指定自增列.
如果想自己指定ID列的值, 那么要设置
set identity_insert 数据库名.模式名.表名;
----然后插入数据;
example:
create table zhabei.test(
id bigint identity(1,1) primary key,
nam
- XML 解析 四种方式
aijuans
android
XML现在已经成为一种通用的数据交换格式,平台的无关性使得很多场合都需要用到XML。本文将详细介绍用Java解析XML的四种方法。
XML现在已经成为一种通用的数据交换格式,它的平台无关性,语言无关性,系统无关性,给数据集成与交互带来了极大的方便。对于XML本身的语法知识与技术细节,需要阅读相关的技术文献,这里面包括的内容有DOM(Document Object
- spring中配置文件占位符的使用
avords
1.类
<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN" "http://www.springframework.o
- 前端工程化-公共模块的依赖和常用的工作流
bee1314
webpack
题记: 一个人的项目,还有工程化的问题嘛? 我们在推进模块化和组件化的过程中,肯定会不断的沉淀出我们项目的模块和组件。对于这些沉淀出的模块和组件怎么管理?另外怎么依赖也是个问题? 你真的想这样嘛? var BreadCrumb = require(‘../../../../uikit/breadcrumb’); //真心ugly。
- 上司说「看你每天准时下班就知道你工作量不饱和」,该如何回应?
bijian1013
项目管理沟通IT职业规划
问题:上司说「看你每天准时下班就知道你工作量不饱和」,如何回应
正常下班时间6点,只要是6点半前下班的,上司都认为没有加班。
Eno-Bea回答,注重感受,不一定是别人的
虽然我不知道你具体从事什么工作与职业,但是我大概猜测,你是从事一项不太容易出现阶段性成果的工作
- TortoiseSVN,过滤文件
征客丶
SVN
环境:
TortoiseSVN 1.8
配置:
在文件夹空白处右键
选择 TortoiseSVN -> Settings
在 Global ignote pattern 中添加要过滤的文件:
多类型用英文空格分开
*name : 过滤所有名称为 name 的文件或文件夹
*.name : 过滤所有后缀为 name 的文件或文件夹
--------
- 【Flume二】HDFS sink细说
bit1129
Flume
1. Flume配置
a1.sources=r1
a1.channels=c1
a1.sinks=k1
###Flume负责启动44444端口
a1.sources.r1.type=avro
a1.sources.r1.bind=0.0.0.0
a1.sources.r1.port=44444
a1.sources.r1.chan
- The Eight Myths of Erlang Performance
bookjovi
erlang
erlang有一篇guide很有意思: http://www.erlang.org/doc/efficiency_guide
里面有个The Eight Myths of Erlang Performance: http://www.erlang.org/doc/efficiency_guide/myths.html
Myth: Funs are sl
- java多线程网络传输文件(非同步)-2008-08-17
ljy325
java多线程socket
利用 Socket 套接字进行面向连接通信的编程。客户端读取本地文件并发送;服务器接收文件并保存到本地文件系统中。
使用说明:请将TransferClient, TransferServer, TempFile三个类编译,他们的类包是FileServer.
客户端:
修改TransferClient: serPort, serIP, filePath, blockNum,的值来符合您机器的系
- 读《研磨设计模式》-代码笔记-模板方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
- 配置心得
chenyu19891124
配置
时间就这样不知不觉的走过了一个春夏秋冬,转眼间来公司已经一年了,感觉时间过的很快,时间老人总是这样不停走,从来没停歇过。
作为一名新手的配置管理员,刚开始真的是对配置管理是一点不懂,就只听说咱们公司配置主要是负责升级,而具体该怎么做却一点都不了解。经过老员工的一点点讲解,慢慢的对配置有了初步了解,对自己所在的岗位也慢慢的了解。
做了一年的配置管理给自总结下:
1.改变
从一个以前对配置毫无
- 对“带条件选择的并行汇聚路由问题”的再思考
comsci
算法工作软件测试嵌入式领域模型
2008年上半年,我在设计并开发基于”JWFD流程系统“的商业化改进型引擎的时候,由于采用了新的嵌入式公式模块而导致出现“带条件选择的并行汇聚路由问题”(请参考2009-02-27博文),当时对这个问题的解决办法是采用基于拓扑结构的处理思想,对汇聚点的实际前驱分支节点通过算法预测出来,然后进行处理,简单的说就是找到造成这个汇聚模型的分支起点,对这个起始分支节点实际走的路径数进行计算,然后把这个实际
- Oracle 10g 的clusterware 32位 下载地址
daizj
oracle
Oracle 10g 的clusterware 32位 下载地址
http://pan.baidu.com/share/link?shareid=531580&uk=421021908
http://pan.baidu.com/share/link?shareid=137223&uk=321552738
http://pan.baidu.com/share/l
- 非常好的介绍:Linux定时执行工具cron
dongwei_6688
linux
Linux经过十多年的发展,很多用户都很了解Linux了,这里介绍一下Linux下cron的理解,和大家讨论讨论。cron是一个Linux 定时执行工具,可以在无需人工干预的情况下运行作业,本文档不讲cron实现原理,主要讲一下Linux定时执行工具cron的具体使用及简单介绍。
新增调度任务推荐使用crontab -e命令添加自定义的任务(编辑的是/var/spool/cron下对应用户的cr
- Yii assets目录生成及修改
dcj3sjt126com
yii
assets的作用是方便模块化,插件化的,一般来说出于安全原因不允许通过url访问protected下面的文件,但是我们又希望将module单独出来,所以需要使用发布,即将一个目录下的文件复制一份到assets下面方便通过url访问。
assets设置对应的方法位置 \framework\web\CAssetManager.php
assets配置方法 在m
- mac工作软件推荐
dcj3sjt126com
mac
mac上的Terminal + bash + screen组合现在已经非常好用了,但是还是经不起iterm+zsh+tmux的冲击。在同事的强烈推荐下,趁着升级mac系统的机会,顺便也切换到iterm+zsh+tmux的环境下了。
我为什么要要iterm2
切换过来也是脑袋一热的冲动,我也调查过一些资料,看了下iterm的一些优点:
* 兼容性好,远程服务器 vi 什么的低版本能很好兼
- Memcached(三)、封装Memcached和Ehcache
frank1234
memcachedehcachespring ioc
本文对Ehcache和Memcached进行了简单的封装,这样对于客户端程序无需了解ehcache和memcached的差异,仅需要配置缓存的Provider类就可以在二者之间进行切换,Provider实现类通过Spring IoC注入。
cache.xml
<?xml version="1.0" encoding="UTF-8"?>
- Remove Duplicates from Sorted List II
hcx2013
remove
Given a sorted linked list, delete all nodes that have duplicate numbers, leaving only distinct numbers from the original list.
For example,Given 1->2->3->3->4->4->5,
- Spring4新特性——注解、脚本、任务、MVC等其他特性改进
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- MySQL安装文档
liyong0802
mysql
工作中用到的MySQL可能安装在两种操作系统中,即Windows系统和Linux系统。以Linux系统中情况居多。
安装在Windows系统时与其它Windows应用程序相同按照安装向导一直下一步就即,这里就不具体介绍,本文档只介绍Linux系统下MySQL的安装步骤。
Linux系统下安装MySQL分为三种:RPM包安装、二进制包安装和源码包安装。二
- 使用VS2010构建HotSpot工程
p2p2500
HotSpotOpenJDKVS2010
1. 下载OpenJDK7的源码:
http://download.java.net/openjdk/jdk7
http://download.java.net/openjdk/
2. 环境配置
▶
- Oracle实用功能之分组后列合并
seandeng888
oracle分组实用功能合并
1 实例解析
由于业务需求需要对表中的数据进行分组后进行合并的处理,鉴于Oracle10g没有现成的函数实现该功能,且该功能如若用JAVA代码实现会比较复杂,因此,特将SQL语言的实现方式分享出来,希望对大家有所帮助。如下:
表test 数据如下:
ID,SUBJECTCODE,DIMCODE,VALUE
1&nbs
- Java定时任务注解方式实现
tuoni
javaspringjvmxmljni
Spring 注解的定时任务,有如下两种方式:
第一种:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http
- 11大Java开源中文分词器的使用方法和分词效果对比
yangshangchuan
word分词器ansj分词器Stanford分词器FudanNLP分词器HanLP分词器
本文的目标有两个:
1、学会使用11大Java开源中文分词器
2、对比分析11大Java开源中文分词器的分词效果
本文给出了11大Java开源中文分词的使用方法以及分词结果对比代码,至于效果哪个好,那要用的人结合自己的应用场景自己来判断。
11大Java开源中文分词器,不同的分词器有不同的用法,定义的接口也不一样,我们先定义一个统一的接口:
/**
* 获取文本的所有分词结果, 对比