Flink-输出算子(Sink)使用

5.5 输出算子

5.5.1 概述

  1. 调用print是返回输出类,作为最后一环sink存在

image.png

该方法创建了一个PrintSinkFunction 操作,然后作为addSink方法的参数

image.png

PrintSinkFunction这个类继承自RichSinkFunction富函数类

  1. RichSinkFunction类
    image.png
  • 继承了AbstractRichFunction富函数类

因此就可以调用富函数类(是一个实现类)的声明周期方法,例如open,close,以及获取运行时上下文,运行环境,定义状态等等

  • RichSinkFunction类同时也实现了SinkFunction这个接口,所以本质上也是SinkFunction

image.png

image.png

  • SinkFunction接口的抽象方法有invoke,传入是value,以及当前的上下文
  1. 关系图

Flink-输出算子(Sink)使用_第1张图片

  1. 如果需要自定义输出算子
    image.png

可以调用DataStream的addSink方法

image.png

然后传入自己实现的SinkFunction

  1. flink提供的第三方系统连接器

Flink-输出算子(Sink)使用_第2张图片

5.5.2 输出到文件

  1. StreamingFileSink流文件输出类
  • 来源

image.png

继承RichSinkFunction类,并实现CheckpointedFunction,CheckpointListener(检查点)

  • 创建实例

image.png

在StreamingFileSink类中调用forRowFormat()方法传入Path以及Encoder返回StreamingFileSink.DefaultBulkFormatBuilder,DefaultBulkFormatBuilder是一个静态类并继承RowFormatBuilder类,RowFormatBuilder类又继承BucketsBuilder类,底层将数据写入bucket(桶),桶里面分大小存储分区文件,实现了分布式存储

image.png

使用Builder构建器构建

image.png

image.png

RowFormatBuilder是行编码

image.png

BulkFormatBuilder是列存储编码格式

  • 关系图
    Flink-输出算子(Sink)使用_第3张图片

  • 代码

public class SinkToFileTest {
    public static void main(String[] args) throws Exception{
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(4);

        DataStreamSource<Event> stream = env.fromElements(new Event("Mary", "./home", 1000L),
                new Event("Bob", "./cart", 2000L),
                new Event("Alice", "./prod?id=100", 3000L),
                new Event("Bob", "./prod?id=1", 3300L),
                new Event("Alice", "./prod?id=200", 3000L),
                new Event("Bob", "./home", 3500L),
                new Event("Bob", "./prod?id=2", 3800L),
                new Event("Bob", "./prod?id=3", 4200L));


        //2.为了得到并传入SinkFunction,需要构建StreamingFileSink的一个对象
        //调用forRowFormat方法或者forBulkformat方法得到一个DefaultRowFormatBuilder
            //  其中forBulkformat方法前面还有类型参数,以及传参要求一个目录名称,一个编码器
                //写入文件需要序列化,需要定义序列化方法并进行编码转换,当成Stream写入文件
        //然后再使用builder创建实例
        StreamingFileSink<String> streamingFileSink = StreamingFileSink.<String>forRowFormat(new Path("./output"),new SimpleStringEncoder<>("UTF-8"))
                .withRollingPolicy(//指定滚动策略,根据事件或者文件大小新产生文件归档保存
                        DefaultRollingPolicy.builder()//使用builder构建实例
                                .withMaxPartSize(1024 * 1024 * 1024)
                                .withRolloverInterval(TimeUnit.MINUTES.toMinutes(15))//事件间隔毫秒数
                                .withInactivityInterval(TimeUnit.MINUTES.toMinutes(15))//当前不活跃的间隔事件,隔多长事件没有数据到来
                                .build()
                )
                .build();
        //1.写入文件调用addSink()方法,并传入SinkFunction
        stream
                .map(data -> data.toString())//把Event类型转换成String
                .addSink(streamingFileSink);

        env.execute();

    }
}
  • 结果

Flink-输出算子(Sink)使用_第4张图片

5.5.3 输出到kafka

image.png

构造FlinkKafkaProducer类传入三个参数:brokerList(主机+端口号)和topicId(topic)以及serializationSchema(编码序列化)完成构造

  1. 代码
public class SinkToKafka {
    public static void main(String[] args) throws Exception{
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);

        //1.从kafka中读取数据
        Properties properties = new Properties();
        properties.setProperty("bootstrap.servers","hadoop2:9092");
        properties.setProperty("group.id", "consumer-group");

        DataStreamSource<String> kafkaStream = env.addSource(
                new FlinkKafkaConsumer<String>("clicks", new SimpleStringSchema(), properties));

        //2.用flink进行简单的etl处理转换
        SingleOutputStreamOperator<String> result = kafkaStream.map(new MapFunction<String, String>() {
            @Override
            public String map(String value) throws Exception {

                String[] fields = value.split(",");
                return new Event(fields[0].trim(), fields[1].trim(), Long.valueOf(fields[2].trim())).toString();

            }
        });

        //3.结果数据写入kafka
            //FlinkKafkaProducer传参borckList,topicid,序列化
        result.addSink(new FlinkKafkaProducer<String>(
                "hadoop2:9092","events",new SimpleStringSchema()));

        env.execute();
    }
}

  1. kafka输出结果

Flink-输出算子(Sink)使用_第5张图片

5.5.4 输出到redis

  1. 引入依赖
<dependency>
 <groupId>org.apache.bahirgroupId>
 <artifactId>flink-connector-redis_2.11artifactId>
 <version>1.0version>
dependency>
  1. 分析
  • RedisSink类分析

image.png

RedisSink类继承自RichSinkFunction

  • 参数分析

image.png

去调构造方法,传入redis集群的配置FlinkJedisConfigBase以及RedisMapper写入命令

image.png

new FlinkJedisConfigBase的时候,可以使用FlinkJedisPoolConfig没毛病,直接继承的FlinkJedisConfigBase

image.png

FlinkJedisConfigBase是一个接口

Flink-输出算子(Sink)使用_第6张图片

实例FlinkJedisPoolConfig的时候也是使用的构造器Builder()的设计模式即,同样再使用.build实例它

  • 第二个参数分析

image.png

RedisMapper是一个接口

image.png

自定义一个实现类并重写方法getCommandDescription(),getKeyFromData(Event data),getValueFromData(Event data)

  • 关系图

Flink-输出算子(Sink)使用_第7张图片

  1. 代码
public class SinkToRedis {
    public static void main(String[] args) throws Exception{
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);

        //1.输入ClickSource是自定义输入
        DataStreamSource<Event> stream = env.addSource(new ClickSource());


        //2.创建一个jedis连接配置
        //FlinkJedisPoolConfig直接继承的FlinkJedisConfigBase
        FlinkJedisPoolConfig config = new FlinkJedisPoolConfig.Builder()
                .setHost("hadoop2")
                .build();



        //3.写入redis
        stream.addSink(new RedisSink<>(config,new MyRedisMapper()));

        env.execute();

    }

    //3.自定义类实现 redisMapper接口
    public static class MyRedisMapper implements RedisMapper<Event>{

        @Override
        //返回一个redis命令的描述
        public RedisCommandDescription getCommandDescription() {
            return new RedisCommandDescription(RedisCommand.HSET,"clicks");//写入哈希表
        }

        @Override
        //把key定义成user
        public String getKeyFromData(Event data) {
            return data.user;
        }

        @Override
        //把value定义成url
        public String getValueFromData(Event data) {
            return data.url;
        }
    }
}
  1. 结果

运行redis

[hadoop1@hadoop2 redis]$ ./src/redis-server 
    
[hadoop1@hadoop2 bin]$ pwd
/usr/local/bin

Flink-输出算子(Sink)使用_第8张图片

5.5.5 输出到ElasticSearch

  1. 引入依赖
<dependency>
 <groupId>org.apache.flinkgroupId> 
<artifactId>flink-connector-elasticsearch6_${scala.binary.version}artifact
Id>
<version>${flink.version}version>
dependency>
  1. 分析
  • ElasticsearchSink类分析

image.png

image.png

ElasticsearchSink类继承ElasticsearchSinkBase抽象类,ElasticsearchSinkBase抽象类继承RichSinkFunction接口

  • 实例

image.png

ElasticsearchSink类调用Builder()传入参数是List和ElasticsearchSinkFunction


image.png

HttpHost需要参数主机名和端口号

Flink-输出算子(Sink)使用_第9张图片
是一个接口,写一个实现类重写他的方法,写入逻辑

  • 关系图
    Flink-输出算子(Sink)使用_第10张图片
  1. 代码
public class SinToES {
    public static void main(String[] args) throws Exception{
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);

        //1.输入
        DataStreamSource<Event> stream = env.fromElements(new Event("Mary", "./home", 1000L),
                new Event("Bob", "./cart", 2000L),
                new Event("Alice", "./prod?id=100", 3000L),
                new Event("Bob", "./prod?id=1", 3300L),
                new Event("Alice", "./prod?id=200", 3000L),
                new Event("Bob", "./home", 3500L),
                new Event("Bob", "./prod?id=2", 3800L),
                new Event("Bob", "./prod?id=3", 4200L));



        
        //2.定义hosts的列表
        ArrayList<HttpHost> httpHosts = new ArrayList<>();
        httpHosts.add(new HttpHost("hadoop",9200));

        //3.定义ElasticsearchSinkFunction,是个接口,重写process方法
        //向es发送请求,并插入数据
        ElasticsearchSinkFunction<Event> elasticsearchSinkFunction = new ElasticsearchSinkFunction<Event>() {
            @Override
            //输入,运行上下文,发送任务请求
            public void process(Event element, RuntimeContext ctx, RequestIndexer indexer) {
                HashMap<String, String> map = new HashMap<>();
                map.put(element.user, element.url);

                //构建一个indexrequest
                IndexRequest request = Requests.indexRequest()
                        .index("clicks")
                        .type("types")
                        .source(map);

                indexer.add(request);
            }
        };

        //4.写入es
        //传入参数是List和ElasticsearchSinkFunction
        stream.addSink(new ElasticsearchSink.Builder<>(httpHosts,elasticsearchSinkFunction).build());

        env.execute();

    }
}
  1. 结果

Flink-输出算子(Sink)使用_第11张图片

image.png

5.5.6 输入到Mysql

  1. 引入依赖
<dependency>
 <groupId>org.apache.flinkgroupId>
 <artifactId>flink-connector-jdbc_${scala.binary.version}artifactId>
 <version>${flink.version}version>
dependency>
<dependency>
 <groupId>mysqlgroupId>
 <artifactId>mysql-connector-javaartifactId>
 <version>5.1.47version>
dependency>
  1. 分析
  • JdbcSink来源

image.png

无继承,无实现

image.png

定义了sink方法,三个参数,sql,JdbcStatementBuilder构造,JdbcConnectionOptions等sql的连接配置,然后返回SinkFunction
image.png

  • 参数分析

JdbcStatementBuilder是个接口,实现了BiConsumerWithException接口

Flink-输出算子(Sink)使用_第12张图片

单一抽象方法accept(),lambda使用

Flink-输出算子(Sink)使用_第13张图片

构造器私有,因此调用JdbcConnectionOptionsBuilder.build()进行实例化

  • 关系图

Flink-输出算子(Sink)使用_第14张图片

  1. 代码
public class SinkToMysql {
    public static void main(String[] args) throws Exception{
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);

        //1.输入
        DataStreamSource<Event> stream = env.fromElements(new Event("Mary", "./home", 1000L),
                new Event("Bob", "./cart", 2000L),
                new Event("Alice", "./prod?id=100", 3000L),
                new Event("Bob", "./prod?id=1", 3300L),
                new Event("Alice", "./prod?id=200", 3000L),
                new Event("Bob", "./home", 3500L),
                new Event("Bob", "./prod?id=2", 3800L),
                new Event("Bob", "./prod?id=3", 4200L));

        //三个参数,sql,JdbcStatementBuilder构造,JdbcConnectionOptions等sql的连接配置
        stream.addSink(JdbcSink.sink(
                "INSERT INTO clicks (user,url) VALUES(?,?)",
                ((statement,event)->{
                    statement.setString(1,event.user);
                    statement.setString(2,event.url);
                }),
                new JdbcConnectionOptions.JdbcConnectionOptionsBuilder()
                        .withUrl("jdbc:mysql://localhost:3306/test2")
                        .withDriverName("com.mysql.jdbc.Driver")
                        .withUsername("root")
                        .withPassword("123456")
                        .build()
        ));

        env.execute();

    }
}
  1. mysql前期准备
  • 创建mysql的test2
  • 创建clicks表
mysql> create table clicks(
    -> user varchar(20) not null,
    -> url varchar(100) not null);
Query OK, 0 rows affected (0.02 sec)
  1. 结果

Flink-输出算子(Sink)使用_第15张图片

5.5.7 自定义Sink输出

  1. 分析

调用DataStream的addSink()方法,并传入自定义好的SinkFunction(采用富函数类),重写关键方法invoke(),并且重写富函数类的生命周期相关方法open和close

  1. 导入依赖
<dependency>
 <groupId>org.apache.hbasegroupId>
 <artifactId>hbase-clientartifactId>
 <version>${hbase.version}version>
dependency>
  1. 代码

你可能感兴趣的:(flink,sink,大数据)