字符集与字符编码

字符与字符编码
字符
字符和字节不太一样,任何一个文字或符号都是一个字符,但所占字节不一定,不同的编码导致一个字符所占的内存不同。
例如:标点符号+是一个字符,汉字我们是两个字符,在GBK编码中一个汉字占2个字节,在UTF-8编码中一个汉字占3个字节。
随着时代的发展,程序员们希望在计算机中显示字符,但计算机只能识别0和1的二进制数。于是就有了编码规范。

编码规范
所谓字符集其实是一套编码规范中的子概念,为了显示字符,国际组织就制定了编码规范,希望使用不同的二进制数来表示代表不同的字符,这样电脑就可以根据二进制数来显示其对应的字符。我们通常就称呼其为XX编码,XX字符集。
例如:GBK 编码规范,根据这套编码规范,计算机就可以在中文字符和二进制数之间相互转换。而使用GBK编码就可以使计算机显示中文字符。

编码规范里的3个子概念

1.字库表
一套编码规范不一定包含世界上所有的字符,每套编码规范都有自己的使用场景。而字库表就存储了编码规范中能显示的所有字符,计算机就是根据二进制数从字库表中找到字符然后显示给用户滴,相当于一个存储字符的数据库。
例如:几乎所有汉字都保存在GBK 编码规范的字库表中。所以可以显示汉字,但法语,俄语并不在其字库表中,所以GBK不能显示法语,俄语等不包含在其中的字符。

2.编码字符集(字符集)
在一个字库表中,每一个字符都有一个对应的二进制地址,而编码字符集就是这些地址的集合。字符集和字库表一一对应,相互转换,这是电脑识别字符的关键。
如果把世界上不同国家文明的所有字符都放在一起组成一个集合,那么我们常见的 ASCII、GB2312、GBK、GB18030、BIG5 字符集都只是包含了该集合的一部分而已。而 Unicode 字符集是可以包含所有国家文明中的所有字符的。

3.字符编码(编码方式)
知道字库表和编码字符集后,我们就可以直接使用二进制地址来得到字符了。但直接使用字符对应的二进制地址来显示文字是十分浪费的,Unicode 编码规范中包括了几百万个字符,想要包括几百万个不同的字符,起码需要3个字节的容量,为了方便将来扩展,Unicode还保留了更多未使用的空间,最多可以存储4个字节的容量。
因此为了区分每个字符,哪怕是00000000 00000000 00000000 00001111这种其实只占了1个字节的字符,我们也要为他分配4个字节的空间,这就导致一个可以用1G保存的文件,现在需要4G才能保存,这是极其浪费的做法。
于是程序员制定了一套算法来节省空间,而每种不同的算法都被称作一种编码方式(下文中为了便于理解都将使用编码方式来称呼字符编码)。一套编码规范可以有多种不同的编码方式,不同的编码方式有不同的适应场景。例如:UTF-8就是一种编码方式,Unicode是一种编码规范。此外,Unicode还有UTF-16,UTF-32这两种编码方式。不同的编码方式节约的空间不同。
总结:一个较短的二进制数,通过一种编码方式,转换成编码字符集中正常的地址,然后在字库表中找到一个对应的字符,最终显示给用户。

ASCII 编码
说到字符编码,不得不说ASCII码的简史。计算机一开始发明的时候是用来解决数字计算的问题,后来人们发现,计算机还可以做更多的事,例如文本处理。但由于计算机只识“数”,因此人们必须告诉计算机哪个数字来代表哪个特定字符,例如65代表字母‘A’,66代表字母‘B’,以此类推。但是计算机之间字符-数字的对应关系必须得一致,否则就会造成同一段数字在不同计算机上显示出来的字符不一样。因此美国国家标准协会ANSI制定了一个标准,规定了常用字符的集合以及每个字符对应的编号,这就是ASCII字符集(Character Set),也称ASCII码(American Standard Code for Information Interchange,美国信息交换标准代码)。
当时的计算机普遍使用8比特字节作为最小的存储和处理单元,加之当时用到的字符也很少,26个大小写英文字母还有数字再加上其他常用符号,也不到100个,因此使用7个比特位就可以高效的存储和处理ASCII码,剩下最高位1比特被用作一些通讯系统的奇偶校验。
ASCII字符集由95个可打印字符(0x20-0x7E)和33个控制字符(0x00-0x19,0x7F)组成。可打印字符用于显示在输出设备上,例如荧屏或者打印纸上,控制字符用于向计算机发出一些特殊指令,例如0x07会让计算机发出哔的一声,0x00通常用于指示字符串的结束,0x0D和0x0A用于指示打印机的打印针头退到行首(回车)并移到下一行(换行)。
那时候的字符编解码系统非常简单,就是简单的查表过程。例如将字符序列编码为二进制流写入存储设备,只需要在ASCII字符集中依次找到字符对应的字节,然后直接将该字节写入存储设备即可。解码二进制流的过程也是类似。

image.png

OEM字符集的衍生
当计算机开始发展起来的时候,人们逐渐发现,ASCII字符集里那可怜的128个字符已经不能再满足他们的需求了。人们就在想,一个字节能够表示的数字(编号)有256个,而ASCII字符只用到了0x00~0x7F,也就是占用了前128个,后面128个数字不用白不用,因此很多人打起了后面这128个数字的主意。可是问题在于,很多人同时有这样的想法,但是大家对于0x80-0xFF这后面的128个数字分别对应什么样的字符,却有各自的想法。这就导致了当时销往世界各地的机器上出现了大量各式各样的OEM字符集。
下面这张表是IBM-PC机推出的其中一个OEM字符集,字符集的前128个字符和ASCII字符集的基本一致(为什么说基本一致呢,是因为前32个控制字符在某些情况下会被IBM-PC机当作可打印字符解释),后面128个字符空间加入了一些欧洲国家用到的重音字符,以及一些用于画线条画的字符。

image.png

事实上,大部分OEM字符集是兼容ASCII字符集的,也就是说,大家对于0x00-0x7F这个范围的解释基本是相同的,而对于后半部分0x80-0xFF的解释却不一定相同。甚至有时候同样的字符在不同OEM字符集中对应的字节也是不同的。
不同的OEM字符集导致人们无法跨机器交流各种文档。

多字节字符集(MBCS)和中文字符集
上面我们提到的字符集都是基于单字节编码,也就是说,一个字节翻译成一个字符。这对于拉丁语系国家来说可能没有什么问题,因为他们通过扩展第8个比特,就可以得到256个字符了,足够用了。但是对于亚洲国家来说,256个字符是远远不够用的。因此这些国家的人为了用上电脑,又要保持和ASCII字符集的兼容,就发明了多字节编码方式,相应的字符集就称为多字节字符集。例如中国使用的就是双字节字符集编码(DBCS,Double Byte Character Set)。
对于单字节字符集来说,代码页中只需要有一张码表即可,上面记录着256个数字代表的字符。程序只需要做简单的查表操作就可以完成编解码的过程。而对于多字节字符集,代码页中通常会有很多码表。那么程序怎么知道该使用哪张码表去解码二进制流呢?答案是,根据第一个字节来选择不同的码表进行解析。
例如目前最常用的中文字符集GB2312,涵盖了所有简体字符以及一部分其他字符;GBK(K代表扩展的意思)则在GB2312的基础上加入了对繁体字符等其他非简体字符(GB18030字符集不是双字节字符集,我们在讲Unicode的时候会提到)。这两个字符集的字符都是使用1-2个字节来表示。Windows系统采用936代码页来实现对GBK字符集的编解码。在解析字节流的时候,如果遇到字节的最高位是0的话,那么就使用936代码页中的第1张码表进行解码,这就和单字节字符集的编解码方式一致了。

GB2312(1980年)一共收录了7445个字符,包括6763个汉字和682个其它符号。汉字区的内码范围高字节从B0-F7,低字节从A1-FE,占用的码位是72*94=6768。其中有5个空位是D7FA-D7FE。
GB2312支持的汉字太少。1995年的汉字扩展规范GBK1.0收录了21886个符号,它分为汉字区和图形符号区。汉字区包括21003个字符。GBK全称《汉字内码扩展规范》,支持国际标准ISO/IEC10646-1和国家标准GB13000-1中的全部中日韩汉字。GBK字符集中所有字符占2个字节,不论中文英文都是2个字节。 没有特殊的编码方式,习惯称呼GBK 编码。一般在国内,汉字较多时使用。
从ASCII、GB2312到GBK,这些编码方法是向下兼容的,即同一个字符在这些方案中总是有相同的编码,后面的标准支持更多的字符。在这些编码中,英文和中文可以统一地处理。区分中文编码的方法是高字节的最高位不为0。按照程序员的称呼,GB2312、GBK都属于双字节字符集 (DBCS)。
2000年的GB18030是取代GBK1.0的正式国家标准。该标准收录了27484个汉字,同时还收录了藏文、蒙文、维吾尔文等主要的少数民族文字。从汉字字汇上说,GB18030在GB13000.1的20902个汉字的基础上增加了CJK扩展A的6582个汉字(Unicode码0x3400-0x4db5),一共收录了27484个汉字。
CJK就是中日韩的意思。Unicode为了节省码位,将中日韩三国语言中的文字统一编码。GB13000.1就是ISO/IEC 10646-1的中文版,相当于Unicode 1.1。
GB18030的编码采用单字节、双字节和4字节方案。其中单字节、双字节和GBK是完全兼容的。4字节编码的码位就是收录了CJK扩展A的6582个汉字。 例如:UCS的0x3400在GB18030中的编码应该是8139EF30,UCS的0x3401在GB18030中的编码应该是8139EF31。
微软提供了GB18030的升级包,但这个升级包只是提供了一套支持CJK扩展A的6582个汉字的新字体:新宋体-18030,并不改变内码。Windows 的内码仍然是GBK。

ANSI标准、国家标准、ISO标准
不同ASCII衍生字符集的出现,让文档交流变得非常困难,因此各种组织都陆续进行了标准化流程。例如美国ANSI组织制定了ANSI标准字符编码(注意,我们现在通常说到ANSI编码,通常指的是平台的默认编码,例如英文操作系统中是ISO-8859-1,中文系统是GBK),ISO组织制定的各种ISO标准字符编码,还有各国也会制定一些国家标准字符集,例如中国的GBK,GB2312和GB18030。
操作系统在发布的时候,通常会往机器里预装这些标准的字符集还有平台专用的字符集,这样只要你的文档是使用标准字符集编写的,通用性就比较高了。例如你用GB2312字符集编写的文档,在中国大陆内的任何机器上都能正确显示。同时,我们也可以在一台机器上阅读多个国家不同语言的文档了,前提是本机必须安装该文档使用的字符集。

ISO-8859-1
ISO-8859-1收录的字符除ASCII收录的字符外,还包括西欧语言、希腊语、泰语、阿拉伯语、希伯来语对应的文字符号。因为ISO-8859-1编码范围使用了单字节内的所有空间,在支持ISO-8859-1的系统中传输和存储其他任何编码的字节流都不会被抛弃。换言之,把其他任何编码的字节流当作ISO-8859-1编码看待都没有问题。这是个很重要的特性,MySQL数据库默认编码是Latin1就是利用了这个特性。ASCII编码是一个7位的容器,ISO-8859-1编码是一个8位的容器。
由此可见,ISO-8859-1只占1个字节,且MySQL数据库默认编码就是ISO-8859-1,有时,tomcat服务器默认也是使用ISO-8859-1编码,然而ISO-8859-1是不支持中文的,有时这就是在浏览器上显示乱码的原因。

Unicode的出现
虽然通过使用不同字符集,我们可以在一台机器上查阅不同语言的文档,但是我们仍然无法解决一个问题:在一份文档中显示所有字符。为了解决这个问题,我们需要一个全人类达成共识的巨大的字符集,这就是Unicode字符集。
Unicode的学名是"Universal Multiple-Octet Coded Character Set",简称为UCS。UCS可以看作是"Unicode Character Set"的缩写。
Unicode字符集涵盖了目前人类使用的所有字符,并为每个字符进行统一编号,分配唯一的字符码(Code Point)。Unicode字符集将所有字符按照使用上的频繁度划分为17个层面(Plane),每个层面上有216=65536个字符码空间。其中第0个层面BMP,基本涵盖了当今世界用到的所有字符。其他的层面要么是用来表示一些远古时期的文字,要么是留作扩展。我们平常用到的Unicode字符,一般都是位于BMP层面上的。目前Unicode字符集中尚有大量字符空间未使用。
在Unicode出现之前,所有的字符集都是和具体编码方案绑定在一起的,都是直接将字符和最终字节流绑定死了,例如ASCII编码系统规定使用7比特来编码ASCII字符集;GB2312以及GBK字符集,限定了使用最多2个字节来编码所有字符,并且规定了字节序。这样的编码系统通常用简单的查表,也就是通过代码页就可以直接将字符映射为存储设备上的字节流了。
这种方式的缺点在于,字符和字节流之间耦合得太紧密了,从而限定了字符集的扩展能力。假设以后火星人入住地球了,要往现有字符集中加入火星文就变得很难甚至不可能了,而且很容易破坏现有的编码规则。
因此Unicode在设计上考虑到了这一点,将字符集和字符编码方案分离开。
也就是说,虽然每个字符在Unicode字符集中都能找到唯一确定的编号(字符码,又称Unicode码),但是决定最终字节流的却是具体的字符编码。例如同样是对Unicode字符“A”进行编码,UTF-8字符编码得到的字节流是0x41,而UTF-16(大端模式)得到的是0x00 0x41。
UCS只是规定如何编码,并没有规定如何传输、保存这个编码。例如“汉”字的UCS编码是6C49,我可以用4个ascii数字来传输、保存这个编码;也可以用utf-8编码:3个连续的字节E6 B1 89来表示它。关键在于通信双方都要认可。UTF-8、UTF-7、UTF-16都是被广泛接受的方案。UTF-8的一个特别的好处是它与ISO-8859-1完全兼容。UTF是“UCS Transformation Format”的缩写。

UCS-2、UCS-4、BMP
UCS有两种格式:UCS-2和UCS-4。顾名思义,UCS-2就是用两个字节编码,UCS-4就是用4个字节(实际上只用了31位,最高位必须为0)编码。下面让我们做一些简单的数学游戏:
UCS-2有216=65536个码位,UCS-4有231=2147483648个码位。
UCS-4根据最高位为0的最高字节分成27=128个group。每个group再根据次高字节分为256个plane。每个plane根据第3个字节分为256行 (rows),每行包含256个cells。当然同一行的cells只是最后一个字节不同,其余都相同。
group 0的plane 0被称作Basic Multilingual Plane, 即BMP。或者说UCS-4中,高两个字节为0的码位被称作BMP。
将UCS-4的BMP去掉前面的两个零字节就得到了UCS-2。在UCS-2的两个字节前加上两个零字节,就得到了UCS-4的BMP。而目前的UCS-4规范中还没有任何字符被分配在BMP之外。

常见的Unicode编码
如果要我们来实现Unicode字符集中BMP字符的编码方案,我们会怎么实现?由于BMP层面上有216=65536个字符码,因此我们只需要两个字节就可以完全表示这所有的字符了。
举个例子,“中”的Unicode字符码是0x4E2D(01001110 00101101),那么我们可以编码为01001110 00101101(大端)或者00101101 01001110 (小端)。
UCS-2和UTF-16对于BMP层面的字符均是使用2个字节来表示,并且编码得到的结果完全一致。不同之处在于,UCS-2最初设计的时候只考虑到BMP字符,因此使用固定2个字节长度,也就是说,他无法表示Unicode其他层面上的字符,而UTF-16为了解除这个限制,支持Unicode全字符集的编解码,采用了变长编码,最少使用2个字节,如果要编码BMP以外的字符,则需要4个字节结对。
Windows从NT时代开始就采用了UTF-16编码,很多流行的编程平台,例如.Net,Java,Qt还有Mac下的Cocoa等都是使用UTF-16作为基础的字符编码。例如代码中的字符串,在内存中相应的字节流就是用UTF-16编码过的。

UTF-8
UTF-8应该是目前应用最广泛的一种Unicode编码方案。由于UCS-2/UTF-16对于ASCII字符使用两个字节进行编码,存储和处理效率相对低下,并且由于ASCII字符经过UTF-16编码后得到的两个字节,高字节始终是0x00,很多C语言的函数都将此字节视为字符串末尾从而导致无法正确解析文本。因此一开始推出的时候遭到很多西方国家的抵触,大大影响了Unicode的推行。后来聪明的人们发明了UTF-8编码,解决了这个问题。
UTF-8编码方案采用1-4个字节来编码字符,方法其实也非常简单。
对于ASCII字符的编码使用单字节,和ASCII编码一摸一样,这样所有原先使用ASCII编解码的文档就可以直接转到UTF-8编码了。对于其他字符,则使用2-4个字节来表示,其中,首字节前置1的数目代表正确解析所需要的字节数,剩余字节的高2位始终是10。例如首字节是1110yyyy,前置有3个1,说明正确解析总共需要3个字节,需要和后面2个以10开头的字节结合才能正确解析得到字符。

image.png

如上表所示,对于只需要1个字节的字符,UTF-8采用ASCII码的编码方式,最高位补0来表示。
例如:01000001我们就是用01000001来表示,对于一个字节的字符,其实就是直接使用地址表示。
而对于n个字节的字符(n>1),即大于一个字节的字符,采用第一个字节前n位补1。第n+1位填0,后面字节的前两位一律设为10。剩下的没有提及的二进制位,全部为这个符号的unicode码。
例如:汉字严的Unicode码是4E25转换成二进制就是01001110 00100101共15位,根据上表可知使用UTF-8字符编码后占3个字节,因此前3位是1,第4位(n+1位)是0,后面两个字节中每个字节的前两位都是10,即1110 xxxx 10 xxxxxx 10xxxxxx。填充进去后就变成了1110 0100 10 111000 10 100101共计24位占3个字节。
由此可见,英文在UTF-8字符编码后只占1个字节,中文占了3个字节。
虽然UTF-8编码没有GBK编码占的空间小,但他胜在面向全世界,至于使用哪一种编码还是取决于具体的使用环境。

带签名的UTF-8指的是什么意思?
带签名指的是字节流以BOM标记开始。很多软件会“智能”的探测当前字节流使用的字符编码,这种探测过程出于效率考虑,通常会提取字节流前面若干个字节,看看是否符合某些常见字符编码的编码规则。由于UTF-8和ASCII编码对于纯英文的编码是一样的,无法区分开来,因此通过在字节流最前面添加BOM标记可以告诉软件,当前使用的是Unicode编码,判别成功率就十分准确了。但是需要注意,不是所有软件或者程序都能正确处理BOM标记,例如PHP就不会检测BOM标记,直接把它当普通字节流解析了。因此如果你的PHP文件是采用带BOM标记的UTF-8进行编码的,那么有可能会出现问题。

UTF-32
UTF-32 是固定长度的编码,始终占用 4 个字节,足以容纳所有的 Unicode 字符,所以直接存储 Unicode 编号即可,不需要任何编码转换。浪费了空间,提高了效率。

GB18030
任何能够将Unicode字符映射为字节流的编码都属于Unicode编码。中国的GB18030编码,覆盖了Unicode所有的字符,因此也算是一种Unicode编码。只不过他的编码方式并不像UTF-8或者UTF-16一样,将Unicode字符的编号通过一定的规则进行转换,而只能通过查表的手段进行编码。

UTF的字节序和BOM
UTF-8以字节为编码单元,没有字节序的问题。UTF-16以两个字节为编码单元,在解释一个UTF-16文本前,首先要弄清楚每个编码单元的字节序。例如“奎”的Unicode编码是594E,“乙”的Unicode编码是4E59。如果我们收到UTF-16字节流“594E”,那么这是“奎”还是“乙”?
Unicode规范中推荐的标记字节顺序的方法是BOM。BOM不是“Bill Of Material”的BOM表,而是Byte Order Mark。BOM是一个有点小聪明的想法:
在UCS编码中有一个叫做"ZERO WIDTH NO-BREAK SPACE"的字符,它的编码是FEFF。而FFFE在UCS中是不存在的字符,所以不应该出现在实际传输中。UCS规范建议我们在传输字节流前,先传输字符"ZERO WIDTH NO-BREAK SPACE"。
这样如果接收者收到FEFF,就表明这个字节流是Big-Endian的;如果收到FFFE,就表明这个字节流是Little-Endian的。因此字符"ZERO WIDTH NO-BREAK SPACE"又被称作BOM。
UTF-8不需要BOM来表明字节顺序,但可以用BOM来表明编码方式。字符"ZERO WIDTH NO-BREAK SPACE"的UTF-8编码是EF BB BF(读者可以用我们前面介绍的编码方法验证一下)。所以如果接收者收到以EF BB BF开头的字节流,就知道这是UTF-8编码了。
Windows就是使用BOM来标记文本文件的编码方式的。

Unicode编码和以前的字符集编码有什么区别?

早期字符编码、字符集和代码页等概念都是表达同一个意思。例如GB2312字符集、GB2312编码,936代码页,实际上说的是同个东西。但是对于Unicode则不同,Unicode字符集只是定义了字符的集合和唯一编号,Unicode编码,则是对UTF-8、UCS-2/UTF-16等具体编码方案的统称而已,并不是具体的编码方案。所以当需要用到字符编码的时候,你可以写gb2312,codepage936,utf-8,utf-16,但请不要写unicode。

关于乱码
乱码指的是程序显示出来的字符文本无法用任何语言去解读。一般情况下会包含大量?或者?。乱码问题是所有计算机用户或多或少会遇到的问题。造成乱码的原因就是因为使用了错误的字符编码去解码字节流,因此当我们在思考任何跟文本显示有关的问题时,请时刻保持清醒:当前使用的字符编码是什么。只有这样,我们才能正确分析和处理乱码问题。
当程序使用特定字符编码解析字节流的时候,一旦遇到无法解析的字节流时,就会用?或者?来替代。因此,一旦你最终解析得到的文本包含这样的字符,而你又无法得到原始字节流的时候,说明正确的信息已经彻底丢失了,尝试任何字符编码都无法从这样的字符文本中还原出正确的信息来。

总结
经过上边的介绍,我们可以大致认为,现在流行的一些编码方案都是在兼容 ASCII 的基础上来实现的。为了满足各国家地区的更多字符的编码需求,出现了 ANSI 编码标准,但是该编码标准在具体各地区国家的实现上是彼此不兼容的。为了满足世界各国字符编码的兼容性需求,Unicode 定义了一个统一、完备的字符集。为了实现 Unicode 字符集在编码上的需求,又诞生了 UTF-8、UTF-16等等编码方案。

image.png

术语解释

字符集(Character Set),字面上的理解就是字符的集合,例如ASCII字符集,定义了128个字符;GB2312定义了7445个字符。而计算机系统中提到的字符集准确来说,指的是已编号的字符的有序集合(不一定是连续)。

字符码(Code Point) 指的就是字符集中每个字符的数字编号。例如ASCII字符集用0-127这连续的128个数字分别表示128个字符;GBK字符集使用区位码的方式为每个字符编号,首先定义一个94X94的矩阵,行称为“区”,列称为“位”,然后将所有国标汉字放入矩阵当中,这样每个汉字就可以用唯一的“区位”码来标识了。例如“中”字被放到54区第48位,因此字符码就是5448。而Unicode中将字符集按照一定的类别划分到0~16这17个层面(Planes)中,每个层面中拥有216=65536个字符码,因此Unicode总共拥有的字符码,也即是Unicode的字符空间总共有17*65536=1114112。

编码的过程是将字符转换成字节流。

解码的过程是将字节流解析为字符。

字符编码(Character Encoding)是将字符集中的字符码映射为字节流的一种具体实现方案。例如ASCII字符编码规定使用单字节中低位的7个比特去编码所有的字符。例如‘A’的编号是65,用单字节表示就是0x41,因此写入存储设备的时候就是b’01000001’。GBK编码则是将区位码(GBK的字符码)中的区码和位码的分别加上0xA0(160)的偏移(之所以要加上这样的偏移,主要是为了和ASCII码兼容),例如刚刚提到的“中”字,区位码是5448,十六进制是0x3630,区码和位码分别加上0xA0的偏移之后就得到0xD6D0,这就是“中”字的GBK编码结果。

代码页(Code Page)一种字符编码具体形式。早期字符相对少,因此通常会使用类似表格的形式将字符直接映射为字节流,然后通过查表的方式来实现字符的编解码。现代操作系统沿用了这种方式。例如Windows使用936代码页、Mac系统使用EUC-CN代码页实现GBK字符集的编码,名字虽然不一样,但对于同一汉字的编码肯定是一样的。

大小端的说法源自《格列佛游记》。我们知道,鸡蛋通常一端大一端小,小人国的人们对于剥蛋壳时应从哪一端开始剥起有着不一样的看法。同样,计算机界对于传输多字节字(由多个字节来共同表示一个数据类型)时,是先传高位字节(大端)还是先传低位字节(小端)也有着不一样的看法,这就是计算机里头大小端模式的由来了。无论是写文件还是网络传输,实际上都是往流设备进行写操作的过程,而且这个写操作是从流的低地址向高地址开始写(这很符合人的习惯),对于多字节字来说,如果先写入高位字节,则称作大端模式。反之则称作小端模式。也就是说,大端模式下,字节序和流设备的地址顺序是相反的,而小端模式则是相同的。一般网络协议都采用大端模式进行传输。

参考资料
谈谈Unicode编码,简要解释UCS、UTF、BMP、BOM等名词
字符集和字符编码学习总结
字符编码的概念(UTF-8、UTF-16、UTF-32都是什么鬼)
关于字符编码,你所需要知道的(ASCII,Unicode,Utf-8,GB2312…)
字符集和编码详解(学习,看一篇就够了)
字符集详解(一看就懂系列)

你可能感兴趣的:(字符集与字符编码)