定义: 为避免树的高度增长过快,降低二叉排序树的性能,规定在插入和删除二叉树结点时,要保证任意结点的左右子树的高度差的绝对值不超过1.将这样的二叉树称为平衡二叉树,简称平衡树。
平衡因子: 结点左子树和右子树的高度差,平衡树平衡因子取值只可能是-1、0、1。
1、LL平衡旋转(右单旋转)
在结点A的左孩子(L)的左子树(L)上插入新节点。
/* LL单旋 */
static Position SingleRotateWithRight(Position A)
{
Position B;
B = A->Left;
A->Left= B->Right;
B->Left = A;
A->Height = Max(Height(A->Left), Height(A->Right)) + 1;
B->Height = Max(Height(B->Left),A->Height) + 1;
return B; /*New root */
}
2、RR平衡旋转(左单旋转)
在结点A的右孩子(R)的右子树(R)上插入新节点。
/* 向左单旋 */
static Position SingleRotateWithLeft(Position A)
{
Position B;
B= A->Right;
A->Right= B->Left;
B->Left= A;
A->Height = Max(Height(A->Left), Height(A->Right)) + 1;
B->Height = Max(A->Height,Height(B->Right)) + 1;
return B; /* New Root */
}
3、LR平衡旋转(先左后右双旋转)
在结点A的左孩子(L)的右子树(R)上插入新节点。
/* 先左后右双旋 */
static Position DoubleRotateWithLeft(Position A)
{
/* Rotate between K1 and K2 */
A->Left = SingleRotateWithRight(A->Left);
/* Rotate between K3 and K2 */
return SingleRotateWithLeft(A);
}
2、RL平衡旋转(先右后左双旋转)
在结点A的右孩子(R)的左子树(L)上插入新节点。
/* 先右后左双旋 */
static Position DoubleRotateWithRight(Position A)
{
A->Right = SingleRotateWithLeft(A->Right);
return SingleRotateWithRight(A);
}
代码实现:
#include
#include
#include
typedef struct AvlNode *Position;
typedef struct AvlNode *AvlTree;
typedef int ElementType;
#define OK 1
#define ERROR 0
#define TRUE 1
#define FALSE 0
typedef int Status;
struct AvlNode
{
ElementType Element;
AvlTree Left;
AvlTree Right;
int Height;
};
AvlTree MakeEmpty(AvlTree T)
{
if (T != NULL)
{
MakeEmpty(T->Left);
MakeEmpty(T->Right);
free(T);
}
return NULL;
}
/**
* 计算Avl节点高度
* @param P 节点P
* @return 树高
*/
static int Height(Position P)
{
if (P == NULL)
return -1;
else
return P->Height;
}
static int Max(int a, int b)
{
return a > b ? a : b;
}
/* LL单旋 */
static Position SingleRotateWithLeft(Position K2)
{
Position K1;
K1 = K2->Left;
K2->Left = K1->Right;
K1->Right = K2;
K2->Height = Max(Height(K2->Left), Height(K2->Right)) + 1;
K1->Height = Max(Height(K1->Left), K2->Height) + 1;
return K1; /* New Root */
}
/* RR单旋 */
static Position SingleRotateWithRight(Position K2)
{
Position K1;
K1 = K2->Right;
K2->Right = K1->Left;
K1->Left = K2;
K2->Height = Max(Height(K2->Left), Height(K2->Right)) + 1;
K1->Height = Max(K2->Height, Height(K1->Right)) + 1;
return K1; /*New root */
}
/* LR双旋 */
static Position DoubleRotateWithLeft(Position K3)
{
/* Rotate between K1 and K2 */
K3->Left = SingleRotateWithRight(K3->Left);
/* Rotate between K3 and K2 */
return SingleRotateWithLeft(K3);
}
/* RL双旋 */
static Position DoubleRotateWithRight(Position K3)
{
K3->Right = SingleRotateWithLeft(K3->Right);
return SingleRotateWithRight(K3);
}
AvlTree Insert(ElementType X, AvlTree T)
{
if (T == NULL)
{
T = (AvlNode*)malloc( sizeof( struct AvlNode ) );
if (T == NULL)
printf("Out of space!!!\n");
else
{
T->Element = X;
T->Height = 0;
T->Left = T->Right = NULL;
}
}
else if (X < T->Element) /* 左子树插入新节点 */
{
T->Left = Insert(X, T->Left);
if (Height(T->Left) - Height(T->Right) == 2)
if (X < T->Left->Element)
T = SingleRotateWithLeft(T);
else
T = DoubleRotateWithLeft(T);
}
else if (X > T->Element) /* 右子树插入新节点 */
{
T->Right = Insert(X, T->Right);
if (Height(T->Right) - Height(T->Left) == 2)
if (X > T->Right->Element)
T = SingleRotateWithRight(T);
else
T = DoubleRotateWithRight(T);
}
/* Else X is in the tree alredy; we'll do nothing */
T->Height = Max(Height(T->Left), Height(T->Right)) + 1;
return T;
}
/* search the min element in AvlTree*/
Position FindMin(AvlTree T)
{
if (T == NULL)
return NULL;
else if (T->Left == NULL)
return T;
else
return FindMin(T->Left);
}
/* search the max element in AvlTree */
Position FindMax(AvlTree T)
{
if (T == NULL)
return NULL;
else if (T->Right == NULL)
return T;
else
return FindMax(T->Right);
}
AvlTree Delete(ElementType X, AvlTree T)
{
Position TmpCell;
if(T == NULL) {
printf("没找到该元素,无法删除!\n");
return NULL;
}
else if (X < T->Element)
T->Left = Delete(X, T->Left);
else if (X > T->Element)
T->Right = Delete(X, T->Right);
else if(T->Left && T->Right) { //要删除的树左右都有儿子
TmpCell = FindMin(T->Right); //用该结点右儿子上最小结点替换该结点,然后与只有一个儿子的操作方法相同
T->Element = TmpCell->Element;
T->Right = Delete(T->Element, T->Right);
}else{
TmpCell = T; //要删除的结点只有一个儿子
if(T->Left == NULL)
T = T->Right;
else if(T->Right == NULL)
T = T->Left;
free(TmpCell);
}
return T;
}
/* 查找X元素所在的位置 */
Position Find(ElementType X, AvlTree T)
{
if (T == NULL)
return NULL;
if (X < T->Element)
return Find(X, T->Left);
else if (X > T->Element)
return Find(X, T->Right);
else
return T;
}
ElementType Retrieve(Position P)
{
if(P != NULL)
return P->Element;
return -1;
}
/**
* 前序遍历"二叉树"
* @param T Tree
*/
void PreorderTravel(AvlTree T)
{
if (T != NULL)
{
printf("%d", T->Element);
PreorderTravel(T->Left);
PreorderTravel(T->Right);
}
}
/**
* 中序遍历"二叉树"
* @param T Tree
*/
void InorderTravel(AvlTree T)
{
if (T != NULL)
{
InorderTravel(T->Left);
printf("%d", T->Element);
InorderTravel(T->Right);
}
}
/**
* 后序遍历二叉树
* @param T Tree
*/
void PostorderTravel(AvlTree T)
{
if (T != NULL)
{
PostorderTravel(T->Left);
PostorderTravel(T->Right);
printf("%d", T->Element);
}
}
/* 打印二叉树信息 */
void PrintTree(AvlTree T, ElementType Element, int direction)
{
if (T != NULL)
{
if (direction == 0)
printf("%2d is root\n", T->Element);
else
printf("%2d is %2d's %6s child\n", T->Element, Element, direction == 1 ? "right" : "left");
PrintTree(T->Left, T->Element, -1);
PrintTree(T->Right, T->Element, 1);
}
}
int main(int argc, char const *argv[])
{
AvlTree T;
Position P;
int i;
T = MakeEmpty(NULL);
T = Insert(15, T);
T = Insert(3, T);
T = Insert(7, T);
T = Insert(10, T);
T = Insert(9, T);
T = Insert(8, T);
printf("Root: %d\n", T->Element);
printf("树的详细信息: ");
PrintTree(T, T->Element, 0);
printf("\n");
printf("前序遍历二叉树: ");
PreorderTravel(T);
printf("\n");
printf("中序遍历二叉树: ");
InorderTravel(T);
printf("\n");
printf("后序遍历二叉树: ");
PostorderTravel(T);
printf("\n");
printf("最大值: %d\n", FindMax(T)->Element);
printf("最小值: %d\n", FindMin(T)->Element);
Delete(7, T);
printf("树的详细信息: \n");
PrintTree(T, T->Element, 0);
return 0;
}
//对Avl树进行插入操作,非递归版本
Avltree Insert_not_recursion (int x, Avltree T)
{
stack<Avltree> route; //定义一个堆栈使用
//找到元素x应该大概插入的位置,但是还没进行插入
Avltree root = T;
while(1)
{
if(T == NULL) //如果T为空树,就创建一棵树,并返回
{
T = static_cast<Avltree>(malloc(sizeof(struct AvlNode)));
if (T == NULL) cout << "out of space!!!" << endl;
else
{
T->Element = x;
T->Left = NULL;
T->Right = NULL;
T->Hight = 0;
T->Isdelete = 0;
route.push (T);
break;
}
}
else if (x < T->Element)
{
route.push (T);
T = T->Left;
continue;
}
else if (x > T->Element)
{
route.push (T);
T = T->Right;
continue;
}
else
{
T->Isdelete = 0;
return root;
}
}
//接下来进行插入和旋转操作
Avltree father,son;
while(1)
{
son = route.top ();
route.pop(); //弹出一个元素
if(route.empty())
return son;
father = route.top ();
route.pop(); //弹出一个元素
if(father->Element < son->Element ) //儿子在右边
{
father->Right = son;
if( Height(father->Right) - Height(father->Left) == 2)
{
if(x > Element(father->Right))
father = SingleRotateWithRight(father);
else
father = DoubleRotateWithRight(father);
}
route.push(father);
}
else if (father->Element > son->Element) //儿子在左边
{
father->Left = son;
if(Height(father->Left) - Height(father->Right) == 2)
{
if(x < Element(father->Left))
father = SingleRotateWithLeft(father);
else
father = DoubleRotateWithLeft(father);
}
route.push(father);
}
father->Hight = max(Height(father->Left),Height(father->Right )) + 1;
}
}