基于粒子群算法优化BP神经网络的高炉si预测,PSO-BP

目录

摘要
BP神经网络的原理
BP神经网络的定义
BP神经网络的基本结构
BP神经网络的神经元
BP神经网络的激活函数,
BP神经网络的传递函数
粒子群算法的原理及步骤
基于粒子群算法改进优化BP神经网络的用电量预测
代码
效果图
结果分析
展望
参考

摘要

一般用启发式算法改进BP神经网络都是改成的三层BP神经网络,本用粒子群算法对BP神经网络进行改进,并通过风温,风湿,风压,炉顶温度,泸定压力等对SI进行建模,,实现对SI的预测

BP神经网络的原理

BP神经网络的定义

人工神经网络无需事先确定输入输出之间映射关系的数学方程,仅通过自身的训练,学习某种规则,在给定输入值时得到最接近期望输出值的结果。作为一种智能信息处理系统,人工神经网络实现其功能的核心是算法。BP神经网络是一种按误差反向传播(简称误差反传)训练的多层前馈网络,其算法称为BP算法,它的基本思想是梯度下降法,利用梯度搜索技术,以期使网络的实际输出值和期望输出值的误差均方差为最小。

BP神经网络的基本结构

基本BP算法包括信号的前向传播和误差的反向传播两个过程。即计算误差输出时按从输入到输出的方向进行,而调整权值和阈值则从输出到输入的方向进行。正向传播时,输入信号通过隐含层作用于输出节点,经过非线性变换,产生输出信号,若实际输出与期望输出不相符,则转入误差的反向传播过程。误差反传是将输出误差通过隐含层向输入层逐层反

你可能感兴趣的:(BP神经网络,100种启发式智能算法及应用,算法,神经网络,机器学习,matlab)