- 消息队列简述
八二年的栗子
java
消息队列(MessageQueue),是分布式系统中重要的组件,其通用的使用场景可以简单地描述为:当不需要立即获得结果,但是并发量又需要进行控制的时候,差不多就是需要使用消息队列的时候。消息队列主要解决了应用耦合、异步处理、流量削锋等问题。当前使用较多的消息队列有RabbitMQ、RocketMQ、ActiveMQ、Kafka、ZeroMQ、MetaMq等,而部分数据库如Redis、Mysql以及
- DolphinScheduler环境搭建、服务启动等常见问题及解决方案
数据库
ApacheDolphinScheduler作为一款分布式易扩展的工作流调度系统,广泛应用于大数据任务编排。然而,在实际使用中,用户可能会遇到环境搭建、服务启动、工作流执行等问题。本文结合社区文档与用户实践经验,整理以下高频问题及详细解决方案,帮助用户快速定位并解决问题。一、安装与部署问题环境依赖配置错误问题:部署时因缺少JDK、Maven或数据库配置导致失败。解决方案:安装JDK1.8+并配置J
- HarmonyOS Next企业级分布式办公应用实战
harmonyos
本文旨在深入探讨基于华为鸿蒙HarmonyOSNext系统(截止目前API12)构建企业级分布式办公应用的技术细节,基于实际开发实践进行总结。主要作为技术分享与交流载体,难免错漏,欢迎各位同仁提出宝贵意见和问题,以便共同进步。本文为原创内容,任何形式的转载必须注明出处及原作者。一、办公应用需求与系统架构搭建(一)企业级分布式办公应用需求分析多人协作编辑文档需求在企业办公中,多人协作编辑文档是常见的
- HarmonyOS Next 应用开发中的分布式能力提升
harmonyos
本文旨在深入探讨华为鸿蒙HarmonyOSNext系统(截止目前API12)中分布式能力相关技术细节,基于实际开发实践进行总结。主要作为技术分享与交流载体,难免错漏,欢迎各位同仁提出宝贵意见和问题,以便共同进步。本文为原创内容,任何形式的转载必须注明出处及原作者。一、HarmonyOSNext分布式能力概述(一)核心概念HarmonyOSNext的分布式能力宛如一座无形的桥梁,巧妙地连接起众多设备
- Dubbo
java
Dubbo是一个高性能的分布式服务框架,提供了多种调用策略来优化服务调用的性能和可靠性。一、负载均衡策略:随机(Random):随机选择一个服务提供者进行调用,适合动态调整权重的场景。轮询(RoundRobin):按顺序依次选择服务提供者,适合请求分布均匀的场景,但可能存在请求累积的问题。最少活跃调用(LeastActive):选择当前活跃调用数最少的服务提供者,适合解决慢提供者接收更少请求的场景
- 内存服务器主要是指什么?
wanhengidc
服务器运维
内存服务器也可以被称为内存计算服务器或者是内存驱动服务器,主要是一种采用了大容量内存作为主要存储介质的服务器,内存服务器的主要特点就是,可以在内存中存储和处理数据信息,不需要再依赖于磁盘,能够为企业提供更快的数据访问速度。内存服务器一般会采用分布式内存架构,将多个服务器节点组合成一个内存集群,可以进行共享内存资源,使内存服务器获得良好的扩展性,以此来支持一些大规模的并发操作;同时内存服务器可以存储
- 彻底搞懂ScheduledThreadPoolExecutor
seven97_top
并发编程java
前言项目中经常会遇到一些非分布式的调度任务,需要在未来的某个时刻周期性执行。实现这样的功能,我们有多种方式可以选择:Timer类,jdk1.3引入,不推荐。它所有任务都是串行执行的,同一时间只能有一个任务在执行,而且前一个任务的延迟或异常都将会影响到之后的任务。可能会出现任务执行时间过长而导致任务相互阻塞的情况Spring的@Scheduled注解,不是很推荐这种方式底层虽然是用线程池实现,但是有
- Go分布式爬虫笔记(五)_golang分布式爬虫架构
2401_87198107
golang分布式爬虫
系统级别优化与架构设计:如何对服务进行拆分如何将服务链接在一起服务调用的关系以及调用频率各种问题:如何让服务随着负载的增加具有可扩展性?是否采用DDD的架构设计?如何进行分布式的协调?选择何种中间件、缓存数据库与存储数据库?使用何种通信方式?如何设计缓存与数据库的关系,才能避免缓存失效之后大量数据直接打到数据库导致的服务响应变慢甚至服务雪崩的问题呢?分布式系统中数据的一致性,如果业务能够接受读取到
- 分布式架构和集群架构的区别
胡萝卜炒白萝卜
架构分布式架构集群架构
目录1.分布式架构2.集群架构1.分布式架构分布式架构是每个服务器都是运行不同的程序,提供的功能不一样,相互协作形成一个完整的生态,再对外提供服务,各个服务器之间有存在相互通信调用的情况,架构图如下。2.集群架构集群是相同功能体的复制,比如我们有一个A服务的集群,由三台服务器组成,则每个服务器运行的程序是完全相同的,功能也是完全相同的,各个服务器之间不存在通信调用的情况。集群架构的目的是与负载均衡
- SpringCloud面试题----eureka和zookeeper都可以提供服务注册与发现的功能,请说说两个的区别
指尖下的技术
Java面试题springcloudeurekazookeeper
dEureka和Zookeeper都可以提供服务注册与发现的功能,它们的区别主要体现在以下几个方面:设计理念Eureka:是基于RESTful风格设计的,强调简单、轻量级,旨在为微服务架构提供一种易于使用的服务发现解决方案,注重服务的可用性和灵活性。Zookeeper:最初是为分布式协调而设计的,提供了一种通用的分布式数据管理和协调服务,其功能更侧重于分布式系统中的数据一致性、节点选举、配置管理等
- DDD - 可能会用到的分布式事务
谦亨有终
架构分布式架构
一、分布式事务的概念:分布式事务是指跨越多个独立的资源或服务(例如多个数据库、微服务、消息队列等)执行的事务操作,其目标是确保整个事务在多个系统中保持原子性和一致性,即要么所有操作全部成功提交,要么全部回滚,从而避免部分操作成功导致数据不一致。关键概念原子性、一致性、隔离性、持久性(ACID)在单个数据库中的事务通常满足ACID原则,分布式事务则需要在多个系统中同时保证这些特性。分布式环境的挑战不
- Docker安装分布式vLLM
MasonYyp
docker分布式容器
Docker安装分布式vLLM1介绍vLLM是一个快速且易于使用的LLM推理和服务库,适合用于生产环境。单主机部署会遇到显存不足的问题,因此需要分布式部署。分布式安装方法https://docs.vllm.ai/en/latest/serving/distributed_serving.html2安装方法⚠️注意:前期一定要把docker环境、运行时和GPU安装好。CUDAVersion:12.4
- 版本控制与Git实战指南:从入门到WebStorm集成
The god of big data
教程大Big数据Data建站gitwebstormelasticsearch
一、版本控制:数字时代的时光机器在软件开发的世界里,每一次代码修改都如同一次时间旅行。版本控制系统(VersionControlSystem)正是这个领域的时光机器,它不仅能完整记录项目的演化历史,更能让开发者自由穿梭于各个版本之间。Git作为分布式版本控制系统的代表,已成为全球开发者必备的核心工具。Git与传统版本控制系统(如SVN)的关键差异:分布式架构:每个开发者都拥有完整的仓库副本闪电级操
- 在CentOS7上部署Memcached高性能内存缓存对象
weixin_34138377
概述Memcached是一套开源的高性能分布式内存对象缓存系统,它将所有的数据都存储在内存中,因为在内存中会统一维护一张巨大的Hash表,所以支持任意存储类型的数据。Memcached是典型的C/S架构,因此需要安装Memcached服务端与MemcachedAPI客户端。Memcached服务端是用C语言编写的,而MemcachedAPI客户端可以用任何语言来编写。常用典型架构如图所示:当Web
- Fink与Hadoop的简介以及联系
Bugkillers
hadoop大数据分布式
Fink和Hadoop是两个常用于大数据处理的开源工具,它们可以搭配使用以构建高效的数据处理系统。一、Fink和Hadoop的关系Fink:1、Fink是一个分布式流处理框架,专注于实时数据处理。它支持高吞吐、低延迟的流处理,适用于实时分析、事件驱动应用等场景。2、Fink提供精确一次(exactly-once)语义,确保数据处理的准确性。Hadoop:1、Hadoop是一个分布式存储和批处理框架
- Windows环境下构建本地多节点Elasticsearch集群
静谧星光c
windowselasticsearchjenkins大数据
Windows环境下构建本地多节点Elasticsearch集群在大数据领域,Elasticsearch是一个经常使用的分布式搜索和分析引擎。本文将介绍如何在Windows操作系统下搭建一个本地的多节点Elasticsearch集群。通过搭建本地集群,我们可以在单一系统上模拟出多个节点,从而加深对Elasticsearch集群内工作原理的理解。准备工作首先,确保你的系统已经安装了Java开发环境(
- 多线程并发模拟实现与分析:基于Scapy的TCP SYN洪水攻击实验研究
键盘侠伍十七
tcp/ip网络协议网络网络安全pythonsynflood
简介实现基于Python实现的多线程TCPSYN洪水攻击。该实例利用Scapy库构造并发送TCPSYN数据包,通过多线程技术模拟并发的网络攻击行为。实现原理SYNFlood攻击是一种经典的分布式拒绝服务(DDoS)攻击方式,利用了TCP协议握手过程中的弱点。TCP三次握手过程在正常情况下,TCP建立连接需要经过以下三个步骤的交互:客户端发送SYN:客户端向服务器发送一个同步(SYN)段,其中包含客
- 网络软件架构设计与架构风格深入解析.zip
满天乱走
本文还有配套的精品资源,点击获取简介:《架构风格与基于网络的软件架构设计》一书提供了关于如何构建高效、可扩展网络系统的重要见解。文档详细介绍了架构风格的核心概念及其在网络软件设计中的应用,包括分布式系统特性的考量、可扩展性策略、安全性、性能优化和维护性等方面。本书通过分析如客户端-服务器、SOA和微服务等架构风格,指导开发者理解并复用成功的设计模式,同时强调安全性和性能优化在架构设计中的重要性,最
- 关于 Kibana 、Elasticsearch 奇怪的知识点,一般人可能永远遇不到
极客日常
极客日常kibanaelkjavaelasticsearch
最近在公司折腾Kibana的时候遇到了个还挺有意思的问题,估计正常情况下几乎没人遇到。先简单说说Kibana和Elasticsearch,Elasticsearch是个分布式、RESTful风格、非常强大的搜索引擎,被广泛地使用于各个IT公司。与Logstash及Kibana开源项目组合在一起,形成了ELK软件栈。Elasticsearch常年霸占DB-Engines搜索引擎排名的榜首,且与第二名
- HBase简介:高效分布式数据存储和处理
代码指四方
分布式hbase数据库大数据
HBase简介:高效分布式数据存储和处理HBase是一个高效的、可扩展的分布式数据库,它是构建在ApacheHadoop之上的开源项目。HBase的设计目标是为大规模数据存储和处理提供高吞吐量和低延迟的解决方案。它可以在成百上千台服务器上运行,并能够处理海量的结构化和半结构化数据。HBase的核心特点包括:分布式存储:HBase使用Hadoop分布式文件系统(HDFS)作为底层存储,数据被分布在集
- 软考高级《系统架构设计师》知识点(五)
Ritchie里其
系统架构
计算机网络网络概述和模型计算机网络是计算机技术与通信技术相结合的产物,它实现了远程通信、远程信息处理和资源共享。计算机网络的功能:数据通信、资源共享、管理集中化、实现分布式处理、负载均衡。网络性能指标:速率、带宽(频带宽度或传送线路速率)、吞吐量、时延、往返时间、利用率。网络非性能指标:费用、质量、标准化、可靠性、可扩展性、可升级性、易管理性和可维护性。通信技术:计算机网络是利用通信技术将数据从一
- 什么是GaussDB
如清风一般
gaussdb
什么是GaussDB简介GaussDB是华为自主创新研发的分布式关系型数据库。该产品具备企业级复杂事务混合负载能力,同时支持分布式事务,同城跨AZ部署,数据0丢失,支持1000+的扩展能力,PB级海量存储。同时拥有云上高可用,高可靠,高安全,弹性伸缩,一键部署,快速备份恢复,监控告警等关键能力,能为企业提供功能全面,稳定可靠,扩展性强,性能优越的企业级数据库服务。应用场景交易型应用大并发、大数据量
- 使用Elasticsearch和Kibana进行查询的语法和编程实践
一起去旅行Coding
elasticsearch大数据搜索引擎编程
Elasticsearch和Kibana是一对强大的组合,用于处理和可视化大规模数据集。Elasticsearch是一个分布式的搜索和分析引擎,而Kibana是一个用于数据可视化和分析的开源工具。在本文中,我们将详细介绍如何使用Elasticsearch和Kibana进行查询,并给出相应的源代码示例。连接到Elasticsearch在开始编写查询之前,我们首先需要连接到Elasticsearch。
- AI 大模型应用数据中心建设:高性能计算与存储架构
AI天才研究院
计算AI大模型企业级应用开发实战DeepSeekR1&大数据AI人工智能大模型javapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
《AI大模型应用数据中心建设:高性能计算与存储架构》关键词:AI大模型,数据中心建设,高性能计算,存储架构,分布式系统,能耗优化,运维管理。摘要:本文深入探讨了AI大模型应用数据中心建设中的高性能计算与存储架构。首先回顾了AI大模型的发展历程和数据中心的含义,然后详细解析了高性能计算架构,包括计算节点、编程模型和网络技术。接着,讨论了存储架构,包括存储类型、分布式存储系统和数据一致性策略。本文还提
- 区块链上的“SQL”
趣链科技
SQL编译
导读《F1:ADistributedSQLDatabaseThatScales》是Google构建的用于支持广告业务的分布式关系型数据库系统。作为一个混合型数据库系统,它结合了高可用、NoSQL数据库的扩展性以及传统SQL数据库的一致性和可用性。F1数据库整体基于GoogleSpanner构建,Spanner主要为上层的F1提供了跨数据中心的数据复制功能和一致性保证。而F1通过使用结构化数据分层架
- Aerospike
小的~~
nosqlAerospike
文章来源:拉勾教育Java高薪训练营第3期Aerospike介绍Aerospike(简称AS)是一个分布式,可扩展的键值存储的NoSQL数据库。T级别大数据高并发的结构化数据存储读写操作达微妙级,99%的响应可在1毫秒内实现采用混合架构,索引存储在内存中,而数据可存储在机械硬盘(HDD)或固态硬盘(SSD)上(也可存储在内存)AS内部在访问SSD屏蔽了文件系统层级,直接访问地址,保证了数据的读取速
- 如何运用边缘计算控制器提升智能工厂的竞争力?
钡铼技术物联网关
人工智能arm开发linux自动化
制造业正经历一场深刻的变革。其中,边缘计算作为一项关键技术,在提升生产效率、降低成本以及实现智能制造方面发挥着至关重要的作用。本文将探讨边缘计算在智能工厂中的应用场景及其带来的价值。边缘计算简介边缘计算是一种分布式计算范式,它使计算和数据存储更接近数据源,而不是依赖于远程数据中心或云服务。这不仅减少了延迟,提高了响应速度,还能有效减少网络带宽使用,增强系统的安全性和隐私保护能力。在工业环境中,边缘
- 边缘AI架构提升LLM应用的响应速度
AI天才研究院
计算ChatGPTDeepSeekR1&大数据AI人工智能大模型javapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
边缘AI架构提升LLM应用的响应速度关键词边缘计算、边缘AI、LLM、响应速度、模型压缩、分布式计算摘要本文探讨了如何通过边缘AI架构提升大型语言模型(LLM)应用的响应速度。文章首先介绍了边缘计算与边缘AI的基本概念、优势和应用场景,然后深入分析了边缘AI系统的架构设计与实现,以及提升LLM响应速度的关键技术。通过实际案例展示了边缘AI在LLM应用中的效果,并对未来发展趋势和潜在挑战进行了展望,
- Spring Cloud构建微服务架构:分布式服务跟踪
yueerba126
SpringCloud架构springcloud微服务
准备工作启动SpringCloud构建微服务架构:服务注册与发现(Eureka、Consul)中的服务注册中心d-eureka-server。1.服务注册中心d-eureka-server:描述:服务注册与发现中心。选项:你可以使用已有的构建或选择公益eureka注册中心。2.微服务应用d-trace-1:描述:微服务应用1。功能:实现REST接口/trace-1,调用此接口会触发对trace-2
- 从Paxos到Zookeeper笔记1——第一章:分布式架构
半臻(火白)
分布式大数据zookeeper
第1章:分布式架构将多台机器组成分布式的处理方式越来越收到业界的青睐。1.1从集中式到分布式由于大型主机拥有卓越的性能和良好的稳定性,在单机处理方面优势非常明显。但是随着计算机系统向网络化和微型化的方向发展,传统的集中式处理越来越不适应人们的需求。大型主机的缺点:(1)操作难度大。(2)价格昂贵(3)虽然大型主机稳定,但是一旦出现故障后果严重(4)扩容非常困难阿里提出的“去IOE”运动,让计算和存
- 算法 单链的创建与删除
换个号韩国红果果
c算法
先创建结构体
struct student {
int data;
//int tag;//标记这是第几个
struct student *next;
};
// addone 用于将一个数插入已从小到大排好序的链中
struct student *addone(struct student *h,int x){
if(h==NULL) //??????
- 《大型网站系统与Java中间件实践》第2章读后感
白糖_
java中间件
断断续续花了两天时间试读了《大型网站系统与Java中间件实践》的第2章,这章总述了从一个小型单机构建的网站发展到大型网站的演化过程---整个过程会遇到很多困难,但每一个屏障都会有解决方案,最终就是依靠这些个解决方案汇聚到一起组成了一个健壮稳定高效的大型系统。
看完整章内容,
- zeus持久层spring事务单元测试
deng520159
javaDAOspringjdbc
今天把zeus事务单元测试放出来,让大家指出他的毛病,
1.ZeusTransactionTest.java 单元测试
package com.dengliang.zeus.webdemo.test;
import java.util.ArrayList;
import java.util.List;
import org.junit.Test;
import
- Rss 订阅 开发
周凡杨
htmlxml订阅rss规范
RSS是 Really Simple Syndication的缩写(对rss2.0而言,是这三个词的缩写,对rss1.0而言则是RDF Site Summary的缩写,1.0与2.0走的是两个体系)。
RSS
- 分页查询实现
g21121
分页查询
在查询列表时我们常常会用到分页,分页的好处就是减少数据交换,每次查询一定数量减少数据库压力等等。
按实现形式分前台分页和服务器分页:
前台分页就是一次查询出所有记录,在页面中用js进行虚拟分页,这种形式在数据量较小时优势比较明显,一次加载就不必再访问服务器了,但当数据量较大时会对页面造成压力,传输速度也会大幅下降。
服务器分页就是每次请求相同数量记录,按一定规则排序,每次取一定序号直接的数据
- spring jms异步消息处理
510888780
jms
spring JMS对于异步消息处理基本上只需配置下就能进行高效的处理。其核心就是消息侦听器容器,常用的类就是DefaultMessageListenerContainer。该容器可配置侦听器的并发数量,以及配合MessageListenerAdapter使用消息驱动POJO进行消息处理。且消息驱动POJO是放入TaskExecutor中进行处理,进一步提高性能,减少侦听器的阻塞。具体配置如下:
- highCharts柱状图
布衣凌宇
hightCharts柱图
第一步:导入 exporting.js,grid.js,highcharts.js;第二步:写controller
@Controller@RequestMapping(value="${adminPath}/statistick")public class StatistickController { private UserServi
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
springmvcSpring 教程spring3 教程Spring 入门
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- TLS java简单实现
antlove
javasslkeystoretlssecure
1. SSLServer.java
package ssl;
import java.io.FileInputStream;
import java.io.InputStream;
import java.net.ServerSocket;
import java.net.Socket;
import java.security.KeyStore;
import
- Zip解压压缩文件
百合不是茶
Zip格式解压Zip流的使用文件解压
ZIP文件的解压缩实质上就是从输入流中读取数据。Java.util.zip包提供了类ZipInputStream来读取ZIP文件,下面的代码段创建了一个输入流来读取ZIP格式的文件;
ZipInputStream in = new ZipInputStream(new FileInputStream(zipFileName));
&n
- underscore.js 学习(一)
bijian1013
JavaScriptunderscore
工作中需要用到underscore.js,发现这是一个包括了很多基本功能函数的js库,里面有很多实用的函数。而且它没有扩展 javascript的原生对象。主要涉及对Collection、Object、Array、Function的操作。 学
- java jvm常用命令工具——jstatd命令(Java Statistics Monitoring Daemon)
bijian1013
javajvmjstatd
1.介绍
jstatd是一个基于RMI(Remove Method Invocation)的服务程序,它用于监控基于HotSpot的JVM中资源的创建及销毁,并且提供了一个远程接口允许远程的监控工具连接到本地的JVM执行命令。
jstatd是基于RMI的,所以在运行jstatd的服务
- 【Spring框架三】Spring常用注解之Transactional
bit1129
transactional
Spring可以通过注解@Transactional来为业务逻辑层的方法(调用DAO完成持久化动作)添加事务能力,如下是@Transactional注解的定义:
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version
- 我(程序员)的前进方向
bitray
程序员
作为一个普通的程序员,我一直游走在java语言中,java也确实让我有了很多的体会.不过随着学习的深入,java语言的新技术产生的越来越多,从最初期的javase,我逐渐开始转变到ssh,ssi,这种主流的码农,.过了几天为了解决新问题,webservice的大旗也被我祭出来了,又过了些日子jms架构的activemq也开始必须学习了.再后来开始了一系列技术学习,osgi,restful.....
- nginx lua开发经验总结
ronin47
使用nginx lua已经两三个月了,项目接开发完毕了,这几天准备上线并且跟高德地图对接。回顾下来lua在项目中占得必中还是比较大的,跟PHP的占比差不多持平了,因此在开发中遇到一些问题备忘一下 1:content_by_lua中代码容量有限制,一般不要写太多代码,正常编写代码一般在100行左右(具体容量没有细心测哈哈,在4kb左右),如果超出了则重启nginx的时候会报 too long pa
- java-66-用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。颠倒之后的栈为{5,4,3,2,1},5处在栈顶
bylijinnan
java
import java.util.Stack;
public class ReverseStackRecursive {
/**
* Q 66.颠倒栈。
* 题目:用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。
* 颠倒之后的栈为{5,4,3,2,1},5处在栈顶。
*1. Pop the top element
*2. Revers
- 正确理解Linux内存占用过高的问题
cfyme
linux
Linux开机后,使用top命令查看,4G物理内存发现已使用的多大3.2G,占用率高达80%以上:
Mem: 3889836k total, 3341868k used, 547968k free, 286044k buffers
Swap: 6127608k total,&nb
- [JWFD开源工作流]当前流程引擎设计的一个急需解决的问题
comsci
工作流
当我们的流程引擎进入IRC阶段的时候,当循环反馈模型出现之后,每次循环都会导致一大堆节点内存数据残留在系统内存中,循环的次数越多,这些残留数据将导致系统内存溢出,并使得引擎崩溃。。。。。。
而解决办法就是利用汇编语言或者其它系统编程语言,在引擎运行时,把这些残留数据清除掉。
- 自定义类的equals函数
dai_lm
equals
仅作笔记使用
public class VectorQueue {
private final Vector<VectorItem> queue;
private class VectorItem {
private final Object item;
private final int quantity;
public VectorI
- Linux下安装R语言
datageek
R语言 linux
命令如下:sudo gedit /etc/apt/sources.list1、deb http://mirrors.ustc.edu.cn/CRAN/bin/linux/ubuntu/ precise/ 2、deb http://dk.archive.ubuntu.com/ubuntu hardy universesudo apt-key adv --keyserver ke
- 如何修改mysql 并发数(连接数)最大值
dcj3sjt126com
mysql
MySQL的连接数最大值跟MySQL没关系,主要看系统和业务逻辑了
方法一:进入MYSQL安装目录 打开MYSQL配置文件 my.ini 或 my.cnf查找 max_connections=100 修改为 max_connections=1000 服务里重起MYSQL即可
方法二:MySQL的最大连接数默认是100客户端登录:mysql -uusername -ppass
- 单一功能原则
dcj3sjt126com
面向对象的程序设计软件设计编程原则
单一功能原则[
编辑]
SOLID 原则
单一功能原则
开闭原则
Liskov代换原则
接口隔离原则
依赖反转原则
查
论
编
在面向对象编程领域中,单一功能原则(Single responsibility principle)规定每个类都应该有
- POJO、VO和JavaBean区别和联系
fanmingxing
VOPOJOjavabean
POJO和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Plain Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比POJO复杂很多,JavaBean是一种组件技术,就好像你做了一个扳子,而这个扳子会在很多地方被
- SpringSecurity3.X--LDAP:AD配置
hanqunfeng
SpringSecurity
前面介绍过基于本地数据库验证的方式,参考http://hanqunfeng.iteye.com/blog/1155226,这里说一下如何修改为使用AD进行身份验证【只对用户名和密码进行验证,权限依旧存储在本地数据库中】。
将配置文件中的如下部分删除:
<!-- 认证管理器,使用自定义的UserDetailsService,并对密码采用md5加密-->
- mac mysql 修改密码
IXHONG
mysql
$ sudo /usr/local/mysql/bin/mysqld_safe –user=root & //启动MySQL(也可以通过偏好设置面板来启动)$ sudo /usr/local/mysql/bin/mysqladmin -uroot password yourpassword //设置MySQL密码(注意,这是第一次MySQL密码为空的时候的设置命令,如果是修改密码,还需在-
- 设计模式--抽象工厂模式
kerryg
设计模式
抽象工厂模式:
工厂模式有一个问题就是,类的创建依赖于工厂类,也就是说,如果想要拓展程序,必须对工厂类进行修改,这违背了闭包原则。我们采用抽象工厂模式,创建多个工厂类,这样一旦需要增加新的功能,直接增加新的工厂类就可以了,不需要修改之前的代码。
总结:这个模式的好处就是,如果想增加一个功能,就需要做一个实现类,
- 评"高中女生军训期跳楼”
nannan408
首先,先抛出我的观点,各位看官少点砖头。那就是,中国的差异化教育必须做起来。
孔圣人有云:有教无类。不同类型的人,都应该有对应的教育方法。目前中国的一体化教育,不知道已经扼杀了多少创造性人才。我们出不了爱迪生,出不了爱因斯坦,很大原因,是我们的培养思路错了,我们是第一要“顺从”。如果不顺从,我们的学校,就会用各种方法,罚站,罚写作业,各种罚。军
- scala如何读取和写入文件内容?
qindongliang1922
javajvmscala
直接看如下代码:
package file
import java.io.RandomAccessFile
import java.nio.charset.Charset
import scala.io.Source
import scala.reflect.io.{File, Path}
/**
* Created by qindongliang on 2015/
- C语言算法之百元买百鸡
qiufeihu
c算法
中国古代数学家张丘建在他的《算经》中提出了一个著名的“百钱买百鸡问题”,鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一,百钱买百鸡,问翁,母,雏各几何?
代码如下:
#include <stdio.h>
int main()
{
int cock,hen,chick; /*定义变量为基本整型*/
for(coc
- Hadoop集群安全性:Hadoop中Namenode单点故障的解决方案及详细介绍AvatarNode
wyz2009107220
NameNode
正如大家所知,NameNode在Hadoop系统中存在单点故障问题,这个对于标榜高可用性的Hadoop来说一直是个软肋。本文讨论一下为了解决这个问题而存在的几个solution。
1. Secondary NameNode
原理:Secondary NN会定期的从NN中读取editlog,与自己存储的Image进行合并形成新的metadata image
优点:Hadoop较早的版本都自带,