常见的微服务限流组件有Hystrix 和 Sentinel等 。
Hystrix
官网地址: https://github.com/Netflix/hystrix/
Hystrix 是 Spring Cloud 框架中 Netflix 组件中的一个组件,提供了限流、熔断、降级等功能 。 Hystrix 的关注点在于以隔离和熔断为主的容错机制,超时或被熔断的调用将会快速失败,并可以提供 fallback 机制。不过就在2018年底,Netflix 宣布不再积极开发 Hystrix,该项目将处于维护模式,推荐开发者只用其它仍然活跃的开源项目Resilience4J。
Sentinel
源码地址:https://github.com/alibaba/Sentinel
中文文档地址:https://sentinelguard.io/zh-cn/docs/quick-start.html
Sentinel是阿里面向云原生开发的面向分布式服务架构的轻量级高可用流量控制、熔断降级的开源组件。 主要以流量为切入点,从流量控制、熔断降级、系统负载保护等多个维度来帮助用户保护服务的稳定性。
Sentinel | Hystrix | |
---|---|---|
隔离策略 | 信号量隔离 | 线程池隔离/信号量隔离 |
熔断降级策略 | 基于响应时间或失败比率 | 基于失败比率 |
实时指标实现 | 滑动窗口 | 滑动窗口(基于 RxJava) |
规则配置 | 支持多种数据源 | 支持多种数据源 |
扩展性 | 多个扩展点 | 插件的形式 |
基于注解的支持 | 支持 | 支持 |
限流 | 基于 QPS,支持基于调用关系的限流 | 有限的支持 |
流量整形 | 支持慢启动、匀速器模式 | 不支持 |
系统负载保护 | 支持 | 不支持 |
控制台 | 开箱即用,可配置规则、查看秒级监控、机器发现等 | 不完善 |
常见框架的适配 | Servlet、Spring Cloud、Dubbo、gRPC 等 | Servlet、Spring Cloud Netflix |
本文档主要说明一下 Sentinel 的集成。
说明:Sentinel 存在一个坑,官方提供的源码包中流控规则配置都是基于内存存储的,Sentinel 控制台服务重启后配置会丢失,仅用于简单测试,不能用于生产环境。 Sentinel 支持 ZooKeeper, Apollo, Nacos 等动态数据源的实现,需要使用者修改源码实现配置的持久化和加载,官网没有例子。
官方提供了一个云上版本的控制台。通过这个版本,开发者可以看到一个完整的生产环境的控制台的功能全集。 详情请参考 AHAS Sentinel 控制台文档来参考如何在生产环境中使用控制台。
什么是流量控制
流量控制在网络传输中是一个常用的概念,它用于调整网络包的发送数据。然而,从系统稳定性角度考虑,在处理请求的速度上,也有非常多的讲究。任意时间到来的请求往往是随机不可控的,而系统的处理能力是有限的。我们需要根据系统的处理能力对流量进行控制。Sentinel 作为一个调配器,可以根据需要把随机的请求调整成合适的形状,如下图所示:
流量控制设计理念
流量控制有以下几个角度:
Sentinel 的设计理念是让您自由选择控制的角度,并进行灵活组合,从而达到想要的效果。
什么是熔断降级
除了流量控制以外,及时对调用链路中的不稳定因素进行熔断也是 Sentinel 的使命之一。由于调用关系的复杂性,如果调用链路中的某个资源出现了不稳定,可能会导致请求发生堆积,进而导致级联错误。
Sentinel 和 Hystrix 的原则是一致的: 当检测到调用链路中某个资源出现不稳定的表现,例如请求响应时间长或异常比例升高的时候,则对这个资源的调用进行限制,让请求快速失败,避免影响到其它的资源而导致级联故障。
熔断降级设计理念
在限制的手段上,Sentinel 和 Hystrix 采取了完全不一样的方法。
Hystrix 通过 线程池隔离 的方式,来对依赖(在 Sentinel 的概念中对应资源)进行了隔离。这样做的好处是资源和资源之间做到了最彻底的隔离。缺点是除了增加了线程切换的成本(过多的线程池导致线程数目过多),还需要预先给各个资源做线程池大小的分配。
Sentinel 对这个问题采取了两种手段:
和资源池隔离的方法不同,Sentinel 通过限制资源并发线程的数量,来减少不稳定资源对其它资源的影响。这样不但没有线程切换的损耗,也不需要您预先分配线程池的大小。当某个资源出现不稳定的情况下,例如响应时间变长,对资源的直接影响就是会造成线程数的逐步堆积。当线程数在特定资源上堆积到一定的数量之后,对该资源的新请求就会被拒绝。堆积的线程完成任务后才开始继续接收请求。
除了对并发线程数进行控制以外,Sentinel 还可以通过响应时间来快速降级不稳定的资源。当依赖的资源出现响应时间过长后,所有对该资源的访问都会被直接拒绝,直到过了指定的时间窗口之后才重新恢复。
Sentinel 同时提供系统维度的自适应保护能力。防止雪崩,是系统防护中重要的一环。当系统负载较高的时候,如果还持续让请求进入,可能会导致系统崩溃,无法响应。在集群环境下,网络负载均衡会把本应这台机器承载的流量转发到其它的机器上去。如果这个时候其它的机器也处在一个边缘状态的时候,这个增加的流量就会导致这台机器也崩溃,最后导致整个集群不可用。
针对这个情况,Sentinel 提供了对应的保护机制,让系统的入口流量和系统的负载达到一个平衡,保证系统在能力范围之内处理最多的请求。
Sentinel 的使用可以分为两个部分:
下载Sentinel
jar包地址:https://github.com/alibaba/Sentinel/releases/download/1.8.6/sentinel-dashboard-1.8.6.jar
也可以下载下载源码自行编译,在sentinel-dashboard工程下生成sentinel-dashboard.jar
运行Sentinel
java -jar sentinel-dashboard.jar
访问Sentinel
访问地址:http://localhost:8080/,登录账户:sentinel,登录密码:sentinel
引入依赖
Sentinel作为Spring Cloud Alibaba的组件之一,在Spring Cloud项目中集成非常的简单。 maven项目中引入依赖:
<dependency>
<groupId>com.alibaba.cloudgroupId>
<artifactId>spring-cloud-starter-alibaba-sentinelartifactId>
dependency>
修改配置文件
在项目的配置文件中引入:
spring:
cloud:
sentinel:
transport:
dashboard: http://localhost:8080
实时监控:过一会儿就看不到监控数据了,因为Sentinel 控制台中监控数据聚合后直接存在内存中,未进行持久化,且仅保留最近 5 分钟的监控数据。若需要监控数据持久化的功能,可以自行扩展实现 MetricsRepository 接口 。
**簇点链路 **:展示服务中已经访问过的资源路径,可以在操作栏配置流控规则。
流控规则:Sentinel 提供了5中方式的规则配置。
资源名:一般是我们的请求路径
针对来源:是指来自于哪个应用,default表示所有请求来源
阈值类型:分为QPS(每秒查询率 )或并发线程数
单机阈值:单个节点的QPS或线程数阈值
是否集群:被请求的服务是否集群部署
流控模式:
直接,就是直接对该资源进行控制
关联,关联某一个资源(/app2),被关联的资源/app2达到阈值2,则限制当前资源/test的访问
链路,记录指定链路上的流量
流控效果:(线程数阈值类型不存在此属性)
快速失败 ,是默认的流量控制方式,当QPS超过任意规则的阈值后,新的请求就会被立即拒绝,并抛出FlowException
。
Warm Up,即预热/冷启动方式。当系统长期处于低水位的情况下,当流量突然增加时,直接把系统拉升到高水位可能瞬间把系统压垮。通过"冷启动",让通过的流量缓慢增加,在一定时间内逐渐增加到阈值上限,给冷系统一个预热的时间,避免冷系统被压垮。
排队等待,会严格控制请求通过的间隔时间,也即是让请求以均匀的速度通过,对应的是漏桶算法。 注意:匀速排队模式暂时不支持 QPS > 1000 的场景。
Sentinel 提供以下几种熔断策略:
热点参数限流会统计传入参数中的热点参数,并根据配置的限流阈值与模式,对包含热点参数的资源调用进行限流。热点参数限流可以看做是一种特殊的流量控制,仅对包含热点参数的资源调用生效。
**注意:**热点规则需要使用@SentinelResource(“app”)注解,否则不生效,并且参数必须是7种基本数据类型才会生效。
@GetMapping("/getValue")
// value为热点规则的资源名,如果不指定value值的时候,是通过反射拿的方法名
// com.module.system.controller.SysConfigController:getValue(java.lang.String)
@SentinelResource(value = "get_value")
public Result<String> getValue(@RequestParam(value = "key") String key) {
return Result.okResult(sysConfigService.getValueByKey(key));
}
参数索引:从0开始,表示代码中热点参数的位置。
单机阈值:请求的QPS。
统计窗口时长:统计周期。
参数例外项:在此处可以添加一条例外项目,针对参数的值做不一样的限流处理。如图中表示当参数值=”dingtalk_worknotice_app_secret“时,在1s内,请求数超过100,则限流当前接口。
Sentinel 系统自适应限流从整体维度对应用入口流量进行控制,结合应用的 Load、总体平均 RT、并发线程数、入口 QPS 、CPU 使用率等几个维度的监控指标,通过自适应的流控策略,让系统的入口流量和系统的负载达到一个平衡,让系统尽可能跑在最大吞吐量的同时保证系统整体的稳定性。
系统规则支持以下的模式:
很多时候,我们需要根据调用来源来判断该次请求是否允许放行,这时候可以使用 Sentinel 的来源访问控制(黑白名单控制)的功能。来源访问控制根据资源的请求来源(origin)限制资源是否通过,若配置白名单则只有请求来源位于白名单内时才可通过;若配置黑名单则请求来源位于黑名单时不通过,其余的请求通过。
用我们目前的服务来说,/sys/oss/file/list 请求来源于gateway服务,如果配置白名单的话就要填写网关的服务名:gateway
如何获取origin
Sentinel是通过RequestOriginParser这个接口的parseOrigin来获取请求的来源的。
public interface RequestOriginParser {
/**
* 从请求request对象中获取origin,获取方式自定义
*/
String parseOrigin(HttpServletRequest request);
}
这个方法的作用就是从request对象中,获取请求者的origin值并返回。默认情况下,sentinel不管请求者从哪里来,返回值永远是default,也就是说一切请求的来源都被认为是一样的值default。因此,我们需要自定义这个接口的实现,让不同的请求,返回不同的origin。
实际场景中微服务的请求来源基本上都是网关服务转发的,因此可以在网关服务中添加请求头origin,然后在服务测自定义实现RequestOriginParser接口,获取请求头的值。
@Component
public class HeaderOriginParser implements RequestOriginParser {
@Override
public String parseOrigin(HttpServletRequest request) {
// 1.获取请求头
String origin = request.getHeader("origin");
// 2.非空判断
if (StringUtils.isEmpty(origin)) {
origin = "blank";
}
return origin;
}
}
在自己的工程的application.yml 中需要引入如下配置
spring:
cloud:
sentinel:
transport:
dashboard: http://localhost:8080
datasource:
ds1-flow: # 流控规则
nacos:
server-addr: 127.0.0.1:8848
data-id: ${spring.application.name}-flow-rules
namespace: *****************************
group-id: SENTINEL_GROUP
# 规则类型:流控
rule-type: flow
data-type: json
ds2-flow: # 熔断规则
nacos:
server-addr: 127.0.0.1:8848
data-id: ${spring.application.name}-degrade-rules
namespace: *****************************
group-id: SENTINEL_GROUP
rule-type: degrade
data-type: json
ds3-flow: # 热点规则
nacos:
server-addr: 127.0.0.1:8848
data-id: ${spring.application.name}-param-rules
namespace: *****************************
group-id: SENTINEL_GROUP
rule-type: param-flow
data-type: json
ds4-flow: # 系统规则
nacos:
server-addr: 127.0.0.1:8848
data-id: ${spring.application.name}-system-rules
namespace: *****************************
group-id: SENTINEL_GROUP
rule-type: system
data-type: json
ds5-flow: # 授权规则
nacos:
server-addr: 127.0.0.1:8848
data-id: ${spring.application.name}-authority-rules
namespace: *****************************
group-id: SENTINEL_GROUP
rule-type: authority
data-type: json
在nacos创建sentinel的命名空间,用于存放流控配置文件。
Sentinel 的持久化需要修改源码才能支持,这里以nacos作为持久化的数据源。所有的修改都是在sentinel-dashboard工程下进行。
修改配置文件
application.properties文件添加nacos的相关配置
# 添加nacos数据源有关的配置项,持久化流控配置到nacos
server.port=8080
nacos.address=192.168.1.68:8848
nacos.namespace=414a50fb-a3c5-4755-a37d-079b62fcba75
pom.xml中修改sentinel-datasource-nacos依赖的作用域
复制代码
复制test/…/nacos包下的类到main/java/…/rule/nacos包下
官方只提供了一个流控规则的处理类,其他类型的规则如果需要使用的话需要自行实现。最终所有规则的持久化修改的类有些多这里就不说了,具体去看代码吧:https://gitee.com/clantiana/sentinel-persistence-demo.git