库伦定律(by小毅)

静电场库伦定律

知识点

库伦定律


2. 真空中两个静止的点电荷之间的相互作用力同它们的电荷量的乘积成正比,与它们的距离的二次方成反比


电场





电势



表达题


  1. 电量分别为和的点电荷(场源电荷),相距为,则其连线中点处产生的电场和电势分别为

解答:


  1. 电量分别为和的四个点电荷,分别位于正方形(边长)的四个顶点上。则其中心点处产生的电场和电势分别为
    image.png
  1. 一个电量为的点电荷,在距离它为的场点产生的电场和电势为

解答:

  1. 均匀带电的圆细环()在环心O处的场强和电势分别为()

解答:

  1. 物理强调建模。如图,求均匀带电的细棒在场点P处的电场和电势,微元取为位于到的一段,则微元公式中的和分别为

解答:

  1. 如图,求均匀带电的半圆细环在场点O处的电场和电势,经常把微元取为位于到的一段,则公式中的为

解答:

  1. 如图,均匀带异号电的半圆细环在圆心O点的电场方向为

解答:
IMG_20190331_130003.jpg
  1. 细棒或细环带电体求电场的思路是:
  • (a)考虑带电体的对称性,分析出合场的方向,记为;
  • (b)取合适的电荷微元,找到该微元到场点的距离,
  • (c) 借助点电荷公式,写出微元在场点产生的电场大小,进而写出在合场方向上的投影。
  • (d)计算定积分。
    现在求均匀带电的细棒()在场点P处的电场,让我们按照以上四个步骤研究该问题。
    第一步,定性分析出该场点合场强的方向,可能的结果为
  • (1)
  • (2)
    第二步以中点为原点建立坐标轴。微元取为位于到的一段,则公式中的和分别为
  • (3) ,
  • (4) ,
    第三步分析该微元的场强,以及在合场方向上的投影,可能的结果为
  • (5)
  • (6)
    第四步,把第二步的结果代入第三步的积分表达式中,计算定积分,有如下列法
  • (7)
  • (8)
    则正确的方程组是( )

解答:(1)(3)(6)(8)

  1. 现在求均匀带电的半圆细环()在环心O处的电场,让我们按照以上四个步骤研究该问题。
    第一步,定性分析出该场点合场强的方向,可能的结果为

解答:

第二步,微元取为位于到的一段圆弧,则公式中的和分别为

解答:

第三步分析该微元的场强,以及在合场方向上的投影,可能的结果为

解答:

第四步,把第二步的结果代入第三步的积分表达式中,计算定积分,有如下列法

解答:

  1. 细棒或细环带电体求电势的思路更简单,因为电势是标量叠加原理。其基本思路是,
    (a)取合适的电荷微元,找到该微元到场点的距离,
    (b)借助点电荷公式,写出微元在场点产生的电势,
    (c)计算定积分。
    现在求均匀带电的半圆细环()在环心O处的电势
    第一步,微元取为位于到的一段圆弧。则公式中的和分别为
    (1) ,
    (2) ,
    第二步写出该微元在该点的电势,可能的结果为
    (3)
    (4)
    第三步,把第二步的结果代入第三步的积分表达式中,计算定积分,有如下列法
    (5)
    (6)
    则正确的方程组是( )

解答:(1)(3)(5)


  1. 细棒或细环带电体求电势的思路更简单,因为电势是标量叠加原理。 现在求均匀带电的细棒()在中心处的电势。
    第一步,微元取为位于到的一段,则和分别为

解答:

第二步写出该微元在该点的电势,

解答:

第三步,把第二步的结果代入第三步的积分表达式中,计算定积分

解答:`

你可能感兴趣的:(库伦定律(by小毅))