公平锁:是指多个线程按照申请锁的顺序来获取锁,线程直接进入队列中排队,队列中的第一个线程才能获得锁。类似排队打饭,先来后到。
非公平锁:是指多个线程获取锁的顺序并不是按照申请锁的顺序,假设有一个线程此时加锁后正准备释放,这时候刚好又有一个线程进来获取锁,则有可能改线程就能获取该锁。(跟插队一样),如果没有刚好线程释放锁的话,则需要乖乖往后面排队,先来后到。就变成公平锁了。(synchronized和lock默认是非公平锁)
lock非公平锁设置:Lock lock=new ReentrantLock(false)。 默认是false,设置为true则为公平锁。
悲观锁是一种悲观思想,它总认为自己在使用数据的时候一定有别的线程来修改,所以悲观锁在持有数据的时候总会把资源或数据锁住,这样其他线程想要请求这个资源的时候就会阻塞,直到等到悲观锁把资源释放为止。传统的关系型数据库里边就用到了很多这种锁机制,**比如行锁,表锁等,读锁,写锁等,都是在做操作之前先上锁。**悲观锁的实现往往依靠数据库本身的锁功能实现。
Java 中,synchronized 关键字和 Lock 的实现类都是悲观锁。
而乐观锁认为自己在使用数据时不会有别的线程修改数据,所以不会添加锁,只是在更新数据的时候去判断之前有没有别的线程更新了这个数据。如果这个数据没有被更新,当前线程将自己修改的数据成功写入。如果数据已经被其他线程更新,则根据不同的实现方式执行不同的操作(例如报错或者自动重试)
例如Java中的validate
比较
悲观锁:比较适合写入操作比较频繁的场景,如果出现大量的读取操作,每次读取的时候都会进行加锁,这样会增加大量的锁的开销,降低了系统的吞吐量。
乐观锁:比较适合读取操作比较频繁的场景,如果出现大量的写入操作,数据发生冲突的可能性就会增大,为了保证数据的一致性,应用层需要不断的重新获取数据,这样会增加大量的查询操作,降低了系统的吞吐量。
就是加锁的次数和释放锁的次数要一样,可重入锁的意义在于防止死锁。
synchronized 和 ReentrantLock 都是可重入锁。
读写锁是一种技术: 通过ReentrantReadWriteLock类来实现。为了提高性能, Java 提供了读写锁,在读的地方使用读锁,在写的地方使用写锁,灵活控制,如果没有写锁的情况下,读是无阻塞的,在一定程度上提高了程序的执行效率。
读写锁分为读锁和写锁,多个读锁不互斥,读锁与写锁互斥,这是由 JVM 自己控制的。(只要有写锁就需要加锁)
轻量级锁在没有多线程竞争的前提下,把整个同步都消除掉,连CAS
(Compare And Swap)操作都不去做了,优于轻量级锁。如果出现两条以上的线程争用同一个锁的情况,那轻量级锁将不会有效,必须膨胀为重量级锁。
同步、线程安全的方法时,是需要先获得这个方法的锁的,退出这个方法时,则会释放锁。如果获取不到这个锁的话,意味着有别的线程在执行这个方法,这时我们就会马上进入阻塞的状态,等待那个持有锁的线程释放锁,然后再把我们从阻塞的状态唤醒,我们再去获取这个方法的锁。这种获取不到锁就马上进入阻塞状态的锁,我们称之为重量级锁。
为了优化重量级锁,特意引入了自旋锁。自旋锁就是,如果此时拿不到锁,它不马上进入阻塞状态,而是等待一段时间,看看这段时间有没其他人把这锁给释放了。怎么等呢?这个就类似于线程在那里做空循环,如果循环一定的次数还拿不到锁,那么它才会进入阻塞的状态。
这个线程退出这个方法的时候,它不会改变这个方法的状态,而是直接退出来,懒的去改,因为它认为除了自己这个线程之外,其他线程并不会来执行这个方法。
然后当这个线程想要再次进入这个方法的时候,会判断一下这个方法的状态,如果这个方法已经被标记为有人在执行了,并且线程的ID是自己,那么它就直接进入这个方法执行,啥也不用做。
synchronized 实现原理
synchronized 是悲观锁,在字节码层被映射成两个指令:monitorenter 和 monitorexit,当一个线程遇到 monitorenter 指令时,会尝试去获取锁,如果获取成功,锁的数量 +1,(因为synchronized是一个可重入锁,需要使用锁计数来判断锁的情况),如果没有获取到锁,就会阻塞;当线程遇到 monitorexit 指令时,锁计数 -1,当计数器为 0 时,线程释放锁;如果线程遇到异常,也会释放锁。
例如查看下面代码的字节码:
public class APP {
void test() {
synchronized (this) {
System.out.println("hello world");
}
}
}
首先 cd
到文件目录,然后执行 javac APP.java
,可得到字节码文件:APP.class,再执行 javap -verbose APP.class
,可看到字节码内容。
package com.hjt.synchronizedDemo;
public class SynchronizedObjectLock implements Runnable {
static SynchronizedObjectLock instence = new SynchronizedObjectLock();
@Override
public void run() {
// 同步代码块形式——锁为this,两个线程使用的锁是一样的,线程1必须要等到线程0释放了该锁后,才能执行
synchronized (this) {
System.out.println("我是线程" + Thread.currentThread().getName());
try {
Thread.sleep(3000);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(Thread.currentThread().getName() + "结束");
}
}
public static void main(String[] args) {
Thread t1 = new Thread(instence);
Thread t2 = new Thread(instence);
t1.start();
t2.start();
}
}
package com.hjt.synchronizedDemo;
public class SynchronizedObjectLock1 implements Runnable {
static SynchronizedObjectLock1 instence = new SynchronizedObjectLock1();
// 创建2把锁
Object block1 = new Object();
Object block2 = new Object();
@Override
public void run() {
// 这个代码块使用的是第一把锁,当他释放后,后面的代码块由于使用的是第二把锁,因此可以马上执行
synchronized (block1) {
System.out.println("block1锁,我是线程" + Thread.currentThread().getName());
try {
Thread.sleep(3000);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println("block1锁,"+Thread.currentThread().getName() + "结束");
}
synchronized (block2) {
System.out.println("block2锁,我是线程" + Thread.currentThread().getName());
try {
Thread.sleep(3000);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println("block2锁,"+Thread.currentThread().getName() + "结束");
}
}
public static void main(String[] args) {
Thread t1 = new Thread(instence);
Thread t2 = new Thread(instence);
t1.start();
t2.start();
}
}
输出结果:
package com.hjt.synchronizedDemo;
public class SynchronizedObjectLock2 implements Runnable {
static SynchronizedObjectLock2 instence1 = new SynchronizedObjectLock2();
static SynchronizedObjectLock2 instence2 = new SynchronizedObjectLock2();
@Override
public void run() {
method();
}
// synchronized用在普通方法上,默认的锁就是this,当前实例
public static synchronized void method() {
System.out.println("我是线程" + Thread.currentThread().getName());
try {
Thread.sleep(3000);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(Thread.currentThread().getName() + "结束");
}
public static void main(String[] args) {
// t1和t2对应的this是两个不同的实例,所以代码不会串行
Thread t1 = new Thread(instence1);
Thread t2 = new Thread(instence2);
t1.start();
t2.start();
}
}
输出结果:
package com.hjt.synchronizedDemo;
public class SynchronizedObjectLock3 implements Runnable {
static SynchronizedObjectLock3 instence1 = new SynchronizedObjectLock3();
static SynchronizedObjectLock3 instence2 = new SynchronizedObjectLock3();
@Override
public void run() {
// 所有线程需要的锁都是同一把
synchronized(SynchronizedObjectLock3.class){
System.out.println("我是线程" + Thread.currentThread().getName());
try {
Thread.sleep(3000);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(Thread.currentThread().getName() + "结束");
}
}
public static void main(String[] args) {
Thread t1 = new Thread(instence1);
Thread t2 = new Thread(instence2);
t1.start();
t2.start();
}
}
运行结果:
lock()
: 加锁unlock()
: 解锁tryLock()
: 尝试获取锁,返回一个boolean值tryLock(long,TimeUtil)
: 尝试获取锁,可以设置超时Lock一般使用的例子,注意ReentrantLock是Lock接口的实现。
package com.hjt.lock;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;
public class LockTest {
private Lock lock = new ReentrantLock();
//需要参与同步的方法
private void method(Thread thread){
try {
lock.lock();
System.out.println("线程名"+thread.getName() + "获得了锁");
}catch(Exception e){
e.printStackTrace();
} finally {
lock.unlock();
System.out.println("线程名"+thread.getName() + "释放了锁");
}
}
public static void main(String[] args) {
LockTest lockTest = new LockTest();
//线程1
Thread t1 = new Thread(new Runnable() {
@Override
public void run() {
lockTest.method(Thread.currentThread());
}
}, "t1");
Thread t2 = new Thread(new Runnable() {
@Override
public void run() {
lockTest.method(Thread.currentThread());
}
}, "t2");
t1.start();
t2.start();
}
}
//执行情况:线程名t1获得了锁
// 线程名t1释放了锁
// 线程名t2获得了锁
// 线程名t2释放了锁
Lock: 是Java中的接口,可重入锁、悲观锁、独占锁、互斥锁、同步锁。
Lock需要手动获取锁和释放锁。
Lock 是一个接口,而 synchronized 是 Java 中的关键字, synchronized 是内置的语言实现。
synchronized 在发生异常时,会自动释放线程占有的锁,因此不会导致 死锁现象发生,而 Lock 在发生异常时,如果没有主动通过 unLock() 去释放 锁,则很可能造成死锁现象,因此使用 Lock 时需要在 finally 块中释放锁。
Lock 可以让等待锁的线程响应中断,而 synchronized 却不行,使用 synchronized 时,等待的线程会一直等待下去,不能够响应中断。
通过 Lock 可以知道有没有成功获取锁,而 synchronized 却无法办到。
Lock 可以通过实现读写锁提高多个线程进行读操作的效率。
ReentrantLock重入锁,是实现Lock接口的一个类,也是在实际编程中使用频率很高的一个锁,支持重入性,表示能够对共享资源能够重复加锁,即当前线程获取该锁再次获取不会被阻塞。并且也是公平锁。
公平锁实例:
package com.hjt.reentrantLock;
/***
* @author hjt
* AbstractQueuedSynchonizer 抽象队列同步器 简称AQS
*/
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;
class MyThread extends Thread {
private Lock lock;
public MyThread(String name, Lock lock) {
super(name);
this.lock = lock;
}
public void run () {
lock.lock();
try {
System.out.println(Thread.currentThread() + " running");
try {
Thread.sleep(500);
} catch (InterruptedException e) {
e.printStackTrace();
}
} finally {
lock.unlock();
}
}
}
public class AbstractQueuedSynchonizerDemo {
public static void main(String[] args) throws InterruptedException {
Lock lock = new ReentrantLock(true);
MyThread t1 = new MyThread("t1", lock);
MyThread t2 = new MyThread("t2", lock);
MyThread t3 = new MyThread("t3", lock);
t1.start();
t2.start();
t3.start();
}
}
运行结果:
JUC的就 是java并发编程工具包
** 读写锁允许同一时刻被多个读线程访问,但是在写线程访问时,所有的读线程和其他的写线程都会被阻塞**
package com.hjt.reentrantReadwriteLock;
import java.util.concurrent.locks.ReentrantReadWriteLock;
class ReadThread extends Thread {
private ReentrantReadWriteLock rrwLock;
public ReadThread(String name, ReentrantReadWriteLock rrwLock) {
super(name);
this.rrwLock = rrwLock;
}
public void run() {
System.out.println(Thread.currentThread().getName() + " trying to lock");
try {
rrwLock.readLock().lock();
System.out.println(Thread.currentThread().getName() + " lock successfully");
Thread.sleep(5000);
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
rrwLock.readLock().unlock();
System.out.println(Thread.currentThread().getName() + " unlock successfully");
}
}
}
class WriteThread extends Thread {
private ReentrantReadWriteLock rrwLock;
public WriteThread(String name, ReentrantReadWriteLock rrwLock) {
super(name);
this.rrwLock = rrwLock;
}
public void run() {
System.out.println(Thread.currentThread().getName() + " trying to lock");
try {
rrwLock.writeLock().lock();
System.out.println(Thread.currentThread().getName() + " lock successfully");
} finally {
rrwLock.writeLock().unlock();
System.out.println(Thread.currentThread().getName() + " unlock successfully");
}
}
}
public class ReentrantReadWriteLockDemo {
public static void main(String[] args) {
ReentrantReadWriteLock rrwLock = new ReentrantReadWriteLock();
ReadThread rt1 = new ReadThread("rt1", rrwLock);
ReadThread rt2 = new ReadThread("rt2", rrwLock);
WriteThread wt1 = new WriteThread("wt1", rrwLock);
rt1.start();
rt2.start();
wt1.start();
}
}
运行结果,先后顺序可能不一样。
被volatile修饰的变量能够保证每个线程能够获取该变量的最新值,从而避免出现数据脏读的现象。
写一段简单的 Java 代码,声明一个 volatile 变量,并赋值。
public class Test {
private volatile int a;
public void update() {
a = 1;
}
public static void main(String[] args) {
Test test = new Test();
test.update();
}
}
通过 hsdis 和 jitwatch 工具可以得到编译后的汇编代码:
......
0x0000000002951563: and $0xffffffffffffff87,%rdi
0x0000000002951567: je 0x00000000029515f8
0x000000000295156d: test $0x7,%rdi
0x0000000002951574: jne 0x00000000029515bd
0x0000000002951576: test $0x300,%rdi
0x000000000295157d: jne 0x000000000295159c
0x000000000295157f: and $0x37f,%rax
0x0000000002951586: mov %rax,%rdi
0x0000000002951589: or %r15,%rdi
0x000000000295158c: lock cmpxchg %rdi,(%rdx) //在 volatile 修饰的共享变量进行写操作的时候会多出 lock 前缀的指令
0x0000000002951591: jne 0x0000000002951a15
0x0000000002951597: jmpq 0x00000000029515f8
0x000000000295159c: mov 0x8(%rdx),%edi
0x000000000295159f: shl $0x3,%rdi
0x00000000029515a3: mov 0xa8(%rdi),%rdi
0x00000000029515aa: or %r15,%rdi
......
lock 前缀的指令在多核处理器下会引发两件事情:
所有多核处理器下还会完成:当处理器发现本地缓存失效后,就会从内存中重读该变量数据,即可以获取当前最新值。
volatile 变量通过这样的机制就使得每个线程都能获得该变量的最新值。
使用 volatile 必须具备的条件
对于原子性,需要强调一点,也是大家容易误解的一点:对volatile变量的单次读/写操作可以保证原子性的,如long和double类型变量,但是并不能保证i++这种操作的原子性,因为本质上i++是读、写两次操作。
常规的使用就不说了,这里说下:
类中所有private方法都隐式地指定为final的,由于无法取用private方法,所以也就不能覆盖它。可以对private方法增添final关键字,但这样做并没有什么好处。看下下面的例子:
public class Base {
private void test() {
}
}
public class Son extends Base{
public void test() {
}
public static void main(String[] args) {
Son son = new Son();
Base father = son;
//father.test();
}
}
Base和Son都有方法test(),但是这并不是一种覆盖,因为private所修饰的方法是隐式的final,也就是无法被继承,所以更不用说是覆盖了,在Son中的test()方法不过是属于Son的新成员罢了,Son进行向上转型得到father,但是father.test()是不可执行的,因为Base中的test方法是private的,无法被访问到。
我们知道父类的final方法是不能够被子类重写的,那么final方法可以被重载吗? 答案是可以的,下面代码是正确的。
public class FinalExampleParent {
public final void test() {
}
public final void test(String str) {
}
}
代码地址:https://github.com/hongjiatao/spring-boot-anyDemo
欢迎互相交流