Flink入门第十二课:DataStream api/Flink sql实现每隔5分钟统计最近一小时热门商品小案例

 用到的数据文件

用到的数据文件
链接:https://pan.baidu.com/s/1uCk-IF4wWVfUkuuTAKaD0w 
提取码:2hmu

1、需求 & 数据

用户行为数据不断写入kafka,程序不断从kafka读取数据,每个五分钟统计最近
一小时浏览次数最多的热门商品top 5。

输入数据:
UserBehavior
    字段名:userId  itemId  categoryId  behavior timestamp
    解释:  用户名  商品id   商品类别id   行为      时间戳
    值举例: lily    1715     1464116    pv       1511658000
    类型:    Long   Long      Integer    String   Long

输出数据:
ItemViewCount
    字段名  itemId   count_pv     windowEnd
    解释:  商品id    商品pv总数   窗口结束时间戳
    值举例:1715      17           1511658000000
    类型:   Long      Long         Long

2、实体类

package com.atguigu.hotitems_analysis.beans;

/**
 *
 */
public class UserBehavior {
    public Long userId;
    public Long itemId;
    public Integer categoryId;
    public String behavior;
    public Long timestamp;

    public UserBehavior() {
    }

    public UserBehavior(Long userId, Long itemId, Integer categoryId, String behavior, Long timestamp) {
        this.userId = userId;
        this.itemId = itemId;
        this.categoryId = categoryId;
        this.behavior = behavior;
        this.timestamp = timestamp;
    }

    public Long getUserId() {
        return userId;
    }

    public void setUserId(Long userId) {
        this.userId = userId;
    }

    public Long getItemId() {
        return itemId;
    }

    public void setItemId(Long itemId) {
        this.itemId = itemId;
    }

    public Integer getCategoryId() {
        return categoryId;
    }

    public void setCategoryId(Integer categoryId) {
        this.categoryId = categoryId;
    }

    public String getBehavior() {
        return behavior;
    }

    public void setBehavior(String behavior) {
        this.behavior = behavior;
    }

    public Long getTimestamp() {
        return timestamp;
    }

    public void setTimestamp(Long timestamp) {
        this.timestamp = timestamp;
    }

    @Override
    public String toString() {
        return "UserBehavior{" +
                "userId=" + userId +
                ", itemId=" + itemId +
                ", categoryId=" + categoryId +
                ", behavior='" + behavior + '\'' +
                ", timestamp=" + timestamp +
                '}';
    }

}
package com.atguigu.hotitems_analysis.beans;

/**
 * 处理后的结果类
 */
public class ItemViewCount {
    public Long itemId;
    public Long windowEnd;
    public Long count;

    public ItemViewCount() {
    }

    public ItemViewCount(Long itemId, Long windowEnd, Long count) {
        this.itemId = itemId;
        this.windowEnd = windowEnd;
        this.count = count;
    }

    public Long getItemId() {
        return itemId;
    }

    public void setItemId(Long itemId) {
        this.itemId = itemId;
    }

    public Long getWindowEnd() {
        return windowEnd;
    }

    public void setWindowEnd(Long windowEnd) {
        this.windowEnd = windowEnd;
    }

    public Long getCount() {
        return count;
    }

    public void setCount(Long count) {
        this.count = count;
    }

    @Override
    public String toString() {
        return "ItemViewCount{" +
                "itemId=" + itemId +
                ", windowEnd=" + windowEnd +
                ", count=" + count +
                '}';
    }
}

3、用户行为数据写入Kafka

package com.atguigu.hotitems_analysis;

import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerRecord;

import java.io.BufferedReader;
import java.io.FileReader;
import java.util.Properties;

public class KafkaProducerUtil {
    public static void main(String[] args) throws Exception{
        writeToKafka("hotitems_test");
    }

    public static void writeToKafka(String topic) throws Exception{
        Properties ps = new Properties();
            ps.setProperty("bootstrap.servers","192.168.149.131:9092");//集群地址
            ps.setProperty("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");//key序列化方式
            ps.setProperty("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");//value序列化方式

        KafkaProducer kafkaProducer = new KafkaProducer<>(ps);//
        BufferedReader bufferedReader = new BufferedReader(new FileReader("G:\\SoftwareInstall\\idea\\project\\UserBehaviorAnalysis\\HotItemsAnalysis\\src\\main\\resources\\UserBehavior.csv"));
        String line;
        while((line= bufferedReader.readLine()) !=null ){
            ProducerRecord record = new ProducerRecord<>(topic, line);
            kafkaProducer.send(record);
            Thread.sleep(2);
        }
        kafkaProducer.close();
    }
}

4、DataStream api消费kafka数据,统计结果

package com.atguigu.hotitems_analysis.Ahotitems;

import com.atguigu.hotitems_analysis.beans.ItemViewCount;
import com.atguigu.hotitems_analysis.beans.UserBehavior;
import org.apache.commons.compress.utils.Lists;
import org.apache.flink.api.common.functions.AggregateFunction;
import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.api.common.state.ListState;
import org.apache.flink.api.common.state.ListStateDescriptor;
import org.apache.flink.api.java.tuple.Tuple;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.streaming.api.TimeCharacteristic;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.KeyedProcessFunction;
import org.apache.flink.streaming.api.functions.timestamps.AscendingTimestampExtractor;
import org.apache.flink.streaming.api.functions.windowing.WindowFunction;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.api.windowing.windows.TimeWindow;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer;
import org.apache.flink.util.Collector;
import org.apache.kafka.clients.consumer.ConsumerConfig;

import java.sql.Timestamp;
import java.util.ArrayList;
import java.util.Comparator;
import java.util.Properties;

/**
 * 本类从kafka接收商品信息数据,每隔五分钟统计最近一小时的热门商品top 5.
 *      商品信息字段名:userId itemId categoryId behavior timestamp
 * 一个商品pv次数越多,热度越高。
 *
 * 分析:
 *      步骤1:分组开窗聚合,得到每个窗口各个商品pv的count值:
 *          先把"behavior=pv"的数据过滤出来,然后按照商品id即itemId分组。
 *          有一个滑动窗口操作,长度一小时,步长5分钟。
 *          要对每个itemId的pv做聚合,且聚合后数据类型改变,应该使用aggregate函数
 *          aggregate函数中第一个参数为增量聚合函数,利用累加器累加状态后将状态输出
 *          因为需要按窗口统计,所以需要获取到窗口的信息,所以aggregate函数必须有第二个参数,即一个全窗口函数
 *          全窗口函数中负责将itemId,windowEnd,count_pv封装并输出。
 *
 *      步骤2:收集同一窗口内所有商品的count值,排序输出top 5
 *          top 5是每个窗口中的,所以肯定需要先按windowEnd分组
 *          窗口内的数据何时全部到达呢?当事件时间到达watermark时,全部数据都已到达,然后触发计算。
 *          已达到但未触发计算的数据可以保存在ListState中,待数据全部到达时触发定时器计算逻辑输出结果。
 *          因为用到了定时器和状态,所以必须使用processFunction api.
 *          定时器:
 *              每来一条数据,就将该数据加入listState,然后就根据数据中带有的windowEnd时间戳注册定时器,时间戳相同,定时器就是同一个。
 *              在onTimer方法中,取出listState中的数据然后排序即可。
 *              注意:
 *                  定时器触发后应该在onTimer方法中调用clear方法清除状态。
 *                  在close方法中也应该调用clear方法清除状态。
 */
public class HotItems {
    public static void main(String[] args) throws Exception {
        //创建环境
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);
        env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);

        /**
         * 读取数据并转换成pojo,按事件时间处理就必须先分配时间戳和watermark
         * 要想kafka从头开始消费时数据,group.id必须是全新的,消费策略必须是earliest
         */
        Properties ps = new Properties();
            ps.setProperty(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG,"192.168.149.131:9092");//集群地址
            ps.setProperty(ConsumerConfig.GROUP_ID_CONFIG, "consumer_group");//消费者组
            ps.setProperty(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringDeserializer");//key反序列化方式
            ps.setProperty(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringDeserializer");//value反序列化方式
            ps.setProperty(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG,"earliest");//消费策略
        //其实第二个参数指定了序列化方式,那key和value的序列化方式就不用指定了
        DataStream  inputStream=env.addSource(new FlinkKafkaConsumer("hotitems_test",new SimpleStringSchema(),ps));
        DataStream dataStream=inputStream.map(
                    line ->{
                        String [] words=line.split(",");
                        return new UserBehavior(new Long(words[0]),new Long(words[1]),new Integer(words[2]),new String(words[3]),new Long(words[4]));
        })
                .assignTimestampsAndWatermarks(
                    new AscendingTimestampExtractor() { //升序
                        @Override
                        public long extractAscendingTimestamp(UserBehavior userBehavior) {//获取事件时间戳,秒级转毫秒级
                            return userBehavior.getTimestamp()*1000L;
                    }
                });

        //分组聚合得到结果数据
        DataStream aggStream=dataStream
                .filter(data -> "pv".equals(data.getBehavior())) //过滤“pv”行为
                .keyBy(UserBehavior::getItemId)
                .timeWindow(Time.minutes(60),Time.minutes(5)) //每5分钟更新一次1小时窗口数据
                .aggregate(new ItemCountAgg(),new WindowItemCountResult());

        //收集同一窗口所有商品的count数据,按top 5输出
        DataStream resultDs=aggStream
                .keyBy("windowEnd")
                .process(new TopNItems(5));



        //输出并执行
        resultDs.print("每隔五分钟最近一小时前五的热门商品");
        env.execute("hot items analysis");
    }


    //泛型1:输入类型   泛型2:聚合状态类型   泛型3:输出类型
    public static class ItemCountAgg implements AggregateFunction{

        @Override
        public Long createAccumulator() {//创建累加器并给初始值
            return 0L;
        }

        @Override
        public Long add(UserBehavior userBehavior,Long accumulator) {//每次计算累加器加一,并返回新的累加器值
            return accumulator+1;
        }

        @Override
        public Long getResult(Long accumulator) {//累加器最终给外部返回的值
            return accumulator;
        }

        @Override
        public Long merge(Long a, Long b) { //合并两个累加器,返回合并后的累加器的状态,这儿用不到.用不到.
            return a+b;
        }
    }

    //参数1:输入类型,即ItemCountAgg的输出类型  参数2:输出类型  参数3:keyBy的返回值键值对中value的类型  参数4: 窗口类型
    public static class WindowItemCountResult implements WindowFunction{

        //迭代器中装的是输入类型
        @Override
        public void apply(Long key, TimeWindow window, Iterable iterable, Collector collector) throws Exception {
           //包装成一个ItemViewCount对象输出
            collector.collect(new ItemViewCount(key.longValue(),window.getEnd(),iterable.iterator().next()));
        }
    }

     //参数1:keyBy返回值类型  参数2:输入类型  参数3:输出类型
    public static class TopNItems extends KeyedProcessFunction{
        private Integer topSize;
        private ListState listState; //列表状态,保存当前窗口所有输出的ItemViewCount

        public TopNItems(Integer topSize) {
            this.topSize = topSize;
        }

        @Override
        public void open(Configuration parameters) throws Exception {
            listState =getRuntimeContext().getListState(new ListStateDescriptor("item-view-count-list",ItemViewCount.class));
        }

        //每来一条数据如何处理
        @Override
        public void processElement(ItemViewCount value, Context context, Collector collector) throws Exception {
            //每来一条数据,存入List中,并注册定时器(只有触发时间一样,定时器就是同一个)
            listState.add(value);
            context.timerService().registerEventTimeTimer(value.getWindowEnd());//注册定时器
        }

        //定时器触发时的逻辑
        @Override
        public void onTimer(long timestamp, OnTimerContext ctx, Collector out) throws Exception {
            //转换成Arraylist再排序
            ArrayList itemViewCounts = Lists.newArrayList(listState.get().iterator());

            itemViewCounts.sort(new Comparator() {
                @Override
                public int compare(ItemViewCount o1, ItemViewCount o2) {//前大于后返回负数,为倒序
                    if(o1.getCount() > o2.getCount())
                        return -1;
                    else if (o1.getCount() == o2.getCount())
                        return 0;
                    else
                        return 1;
                }
            });

            //定义输出结果格式
            StringBuilder resultBuilder=new StringBuilder();
            resultBuilder.append("===================\n");
            resultBuilder.append("窗口结束时间:").append(new Timestamp(timestamp)).append("\n"); //输出windowend

            //遍历输出
            for (int i = 0; i < Math.min(topSize,itemViewCounts.size()); i++) {
                ItemViewCount currentItemViewCount = itemViewCounts.get(i);
                resultBuilder.append("Number").append(i+1).append(":")
                        .append("商品ID:").append(currentItemViewCount.getItemId())
                        .append("浏览量:").append(currentItemViewCount.getCount())
                        .append("\n");
            }

            resultBuilder.append("===================\n\n");

            Thread.sleep(1000L);//控制输出频率
            out.collect(resultBuilder.toString());
            listState.clear();//清空状态
        }

         @Override
         public void close() throws Exception {
             listState.clear();//清空状态
         }
     }
}

 5、Flink sql消费kafka数据,统计结果

package com.atguigu.hotitems_analysis.Ahotitems;

import org.apache.flink.streaming.api.TimeCharacteristic;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.EnvironmentSettings;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.java.StreamTableEnvironment;
import org.apache.flink.types.Row;

/**
 * 本类从kafka接收商品信息数据,每隔五分钟统计最近一小时的热门商品top 5.
 *  计划器这东西在Table api&Flink sql才需要引入
 *
 */
public class HotItemsFlinkSQL {
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);
        env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);
        EnvironmentSettings settings = EnvironmentSettings.newInstance() //计划器这东西在Table api&Flink sql才需要引入
                .useBlinkPlanner()
                .inStreamingMode()
                .build();
        StreamTableEnvironment tableEnv = StreamTableEnvironment.create(env, settings);

        //创建kafka源表
        tableEnv.sqlUpdate(
                "create table inputTable(" +
                        "      userId BIGINT, " +
                        "      itemId BIGINT, " +
                        "      categoryId INT, " +
                        "      behavior STRING," +
                        "      ts BIGINT," +
                        "      rt AS TO_TIMESTAMP(FROM_UNIXTIME(ts))," +     //基于ts新建一个事件时间字段
                        "      WATERMARK FOR rt AS rt - INTERVAL '1' SECOND " +
                        ") WITH ( " +
                        "      'connector.type' = 'kafka'," +
                        "      'connector.version' = 'universal'," +
                        "      'connector.topic' = 'hotitems_test'," +
                        "      'connector.properties.group.id' = 'flink_hot1iqm11saq12311'," +
                        "      'connector.startup-mode' = 'earliest-offset'," +      //消费模式
                        "      'connector.properties.zookeeper.connect' = '192.168.149.131:2181'," +
                        "      'connector.properties.bootstrap.servers' = '192.168.149.131:9092'," +
                        "      'format.type' = 'csv' )"); //如果是json就写json


        //       tableEnv.registerFunction("long2Ts",new LongToTimestamp());//注册函数


        //Flink sql处理:由于table api中没有窗口内求top N的函数,所以我们使用flink sql来进行窗口内求top n.
        //table直接转视图调的是TableEnviroment的方法,而不是StreamTableEnviroment的,可能会有一些问题,
        //我们可以table转datastream,datastream再转视图曲线救国。
        //  tableEnv.createTemporaryView("sensor",tableEnv.toAppendStream(table1, Row.class),"itemId,windowEnd,cnt");
        Table resultTable = tableEnv.sqlQuery(" select * from  " +
                "(select *,row_number() over(partition by windowEnd order by cnt desc ) as top_rank from " +
                "   ( " +
                "       select itemId,hop_end(rt,interval '5' minute,interval '1' hour) as  windowEnd,count(itemId) cnt  " +
                "       from inputTable where behavior='pv'" +
                "       group by itemId,hop(rt,interval '5' minute,interval '1' hour)" +
                "   )t1 " +
                ")t where top_rank<=5" );

        //输出,Flink sql处理了的时候已经没有窗口,必须使用toRetractStream输出
        tableEnv.toRetractStream(resultTable,Row.class).print("table api&Flink sql小案例");
        //执行
        env.execute("hot items analysis");
    }
}

5、项目依赖



    4.0.0

    com.atguigu
    UserBehaviorAnalysis
    pom
    1.0-SNAPSHOT
    
        HotItemsAnalysis
        BasicKnowledge
    
    
    
        1.10.1
        2.11
        2.2.0
    
    
    
        
            org.apache.flink
            flink-clients_${scala.binary.version}
            ${flink.version}
        
        
            org.apache.flink
            flink-java
            ${flink.version}
        
        
            org.apache.flink
            flink-streaming-java_${scala.binary.version}
            ${flink.version}
        
        
            org.apache.kafka
            kafka_${scala.binary.version}
            ${kafka.version}
        
        
            org.apache.flink
            flink-connector-kafka_${scala.binary.version}
            ${flink.version}
        
        
        
            org.apache.flink
            flink-table-planner-blink_${scala.binary.version}
            ${flink.version}
        
        
        
            org.apache.flink
            flink-table-planner_${scala.binary.version}
            ${flink.version}
        
        
        
            org.apache.flink
            flink-csv
            ${flink.version}
        
        
        
            org.apache.flink
            flink-connector-kafka-0.11_${scala.binary.version}
            ${flink.version}
        
        
            org.apache.flink
            flink-connector-redis_${scala.binary.version}
            1.1.5
        
        
        
            org.apache.flink
            flink-connector-elasticsearch6_${scala.binary.version}
            ${flink.version}
        
        
        
            mysql
            mysql-connector-java
            5.1.44
        
    
    
    
        
            
                maven-compiler-plugin
                
                    1.8
                    1.8
                    UTF-8
                
            
        
    

用到的数据文件

链接:https://pan.baidu.com/s/1uCk-IF4wWVfUkuuTAKaD0w 
提取码:2hmu

你可能感兴趣的:(Flink从入门到精通,Flink,ProcessFunction,state)