最长公共子序列(动态规划)

   Time Limit: 1 Sec     Memory Limit: 128 Mb        
Description
求两个序列的最每组测试样例都为一行,两组字符串,每组不超过1000,用空格隔开。求最长公共子序列,都为小写字母。

Input
每组测试样例都为一行,两组字符串,每组不超过1000,用空格隔开。

Output
对于每个测试实例,输出最长公共子序列的长度,每个实例的输出占一行。

Sample Input
abcfbc abfcab
programming contest 
abcd mnp
Sample Output
4
2
0

该题是算法动态规划的练习题

还是按照动态规划的步骤来

先定义子问题的存储数组,按照题目问题定义即可,很明显子问题肯定是被限制在两个输入字符串a和b各自的子字符串里,因此我们定义一个二维数组dp[i][j] 为对a的子字符串[1,i] 和 对b的子字符串[1,j] 的最长公共子序列长度

然后就是划分子问题和子问题之间的关系了(得到递推方程)

case1:

a[i] == b[j] ---> dp[i][j]=dp[i-1][j-1]+1

最长公共子序列(动态规划)_第1张图片

case2:

a[i] != b[j]  dp[i][j]=max(dp[i-1][j],dp[i][j-1]) 

最长公共子序列(动态规划)_第2张图片

这里想了蛮久理解起来还是有点困难,下面是一些分析,希望能帮助理解

假设已经知道 Zk={z1,z2,…,zk} 是X={x1,x2,…,xm} 和 Y={y1,y2,…,yn} 的最长公共子序列 

,那么可以分2种情况讨论

1)如果zk = xm = yn

        那么Zk-1是Xm-1和Yn-1的最长公共子序列

2)如果xm!=yn

        1)如果 zk!=xm

                那么Zk-1是Xm-1和Yn的最长公共子序列

        2)如果zk!=yn

                那么Zk-1是Xm和Yn-1的最长公共子序列

到这里其实就可以写代码了

#include
#include
#include
using namespace std;

char a[1010],b[1010];
int dp[1010][1010];//定义dp[i][j]为对a的子字符串[1,i] 和 对b的子字符串[1,j] 的最长公共子序列长度 

int main(){
	while(scanf("%s %s",a,b)!=EOF){
		memset(dp,0,sizeof(dp));//初始化为0 
		int lena=strlen(a),lenb=strlen(b);
		for(int i=0;i

你可能感兴趣的:((算法+例题)讲解,动态规划,算法)