代码随想录算法训练营第五十六天-动态规划16|● 583. 两个字符串的删除操作 ● 72. 编辑距离 ● 编辑距离总结篇

一、583. 两个字符串的删除操作
给定两个单词 word1 和 word2,找到使得 word1 和 word2 相同所需的最小步数,每步可以删除任意一个字符串中的一个字符。

示例:

输入: “sea”, “eat”
输出: 2
解释: 第一步将"sea"变为"ea",第二步将"eat"变为"ea"


 

// dp数组中存储word1和word2最长相同子序列的长度
class Solution {
    public int minDistance(String word1, String word2) {
        int len1 = word1.length();
        int len2 = word2.length();
        int[][] dp = new int[len1 + 1][len2 + 1];

        for (int i = 1; i <= len1; i++) {
            for (int j = 1; j <= len2; j++) {
                if (word1.charAt(i - 1) == word2.charAt(j - 1)) {
                    dp[i][j] = dp[i - 1][j - 1] + 1;
                } else {
                    dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - 1]);
                }
            }
        }

        return len1 + len2 - dp[len1][len2] * 2;
    }
}

// dp数组中存储需要删除的字符个数
class Solution {
    public int minDistance(String word1, String word2) {
        int[][] dp = new int[word1.length() + 1][word2.length() + 1];
        for (int i = 0; i < word1.length() + 1; i++) dp[i][0] = i;
        for (int j = 0; j < word2.length() + 1; j++) dp[0][j] = j;
        
        for (int i = 1; i < word1.length() + 1; i++) {
            for (int j = 1; j < word2.length() + 1; j++) {
                if (word1.charAt(i - 1) == word2.charAt(j - 1)) {
                    dp[i][j] = dp[i - 1][j - 1];
                }else{
                    dp[i][j] = Math.min(dp[i - 1][j - 1] + 2,
                                        Math.min(dp[i - 1][j] + 1, dp[i][j - 1] + 1));
                }
            }
        }
        
        return dp[word1.length()][word2.length()];
    }
}

二、72. 编辑距离
给你两个单词 word1 和 word2,请你计算出将 word1 转换成 word2 所使用的最少操作数 。

你可以对一个单词进行如下三种操作:

插入一个字符

删除一个字符

替换一个字符

示例 1:

输入:word1 = “horse”, word2 = “ros”

输出:3

解释: horse -> rorse (将 ‘h’ 替换为 ‘r’) rorse -> rose (删除 ‘r’) rose -> ros (删除 ‘e’)

示例 2:

输入:word1 = “intention”, word2 = “execution”

输出:5

解释: intention -> inention (删除 ‘t’) inention -> enention (将 ‘i’ 替换为 ‘e’) enention -> exention (将 ‘n’ 替换为 ‘x’) exention -> exection (将 ‘n’ 替换为 ‘c’) exection -> execution (插入 ‘u’)

提示:

0 <= word1.length, word2.length <= 500
word1 和 word2 由小写英文字母组成

public int minDistance(String word1, String word2) {
    int m = word1.length();
    int n = word2.length();
    int[][] dp = new int[m + 1][n + 1];
    // 初始化
    for (int i = 1; i <= m; i++) {
        dp[i][0] =  i;
    }
    for (int j = 1; j <= n; j++) {
        dp[0][j] = j;
    }
    for (int i = 1; i <= m; i++) {
        for (int j = 1; j <= n; j++) {
            // 因为dp数组有效位从1开始
            // 所以当前遍历到的字符串的位置为i-1 | j-1
            if (word1.charAt(i - 1) == word2.charAt(j - 1)) {
                dp[i][j] = dp[i - 1][j - 1];
            } else {
                dp[i][j] = Math.min(Math.min(dp[i - 1][j - 1], dp[i][j - 1]), dp[i - 1][j]) + 1;
            }
        }
    }
    return dp[m][n];
}

你可能感兴趣的:(算法,动态规划,java)