Java分布式跟踪系统Zipkin(二):Brave源码分析-Tracer和Span

所有博文均在个人独立博客http://blog.mozhu.org首发,欢迎访问!

Brave是Java版的Zipkin客户端,它将收集的跟踪信息,以Span的形式上报给Zipkin系统。

(Zipkin是基于Google的一篇论文,名为Dapper,Dapper在荷兰语里是“勇敢的”的意思,这也是Brave的命名的原因)

Brave目前版本为4.9.1,兼容zipkin1和2的协议,github地址:https://github.com/openzipkin/brave

我们一般不会手动编写Trace相关的代码,Brave提供了一些开箱即用的库,来帮助我们对某些特定的库类来进行追踪,比如servlet,springmvc,mysql,okhttp3,httpclient等,这些都可以在下面页面中找到:

https://github.com/openzipkin/brave/tree/master/instrumentation

我们先来看看一个简单的Demo来演示下Brave的基本使用,这对我们后续分析Brave的原理和其他类库的使用有很大帮助

TraceDemo

package tracing;

import brave.Span;
import brave.Tracer;
import brave.Tracing;
import brave.context.log4j2.ThreadContextCurrentTraceContext;
import brave.propagation.B3Propagation;
import brave.propagation.ExtraFieldPropagation;
import zipkin2.codec.SpanBytesEncoder;
import zipkin2.reporter.AsyncReporter;
import zipkin2.reporter.Sender;
import zipkin2.reporter.okhttp3.OkHttpSender;

import java.util.concurrent.TimeUnit;

public class TraceDemo {

    public static void main(String[] args) {
        Sender sender = OkHttpSender.create("http://localhost:9411/api/v2/spans");
        AsyncReporter asyncReporter = AsyncReporter.builder(sender)
                .closeTimeout(500, TimeUnit.MILLISECONDS)
                .build(SpanBytesEncoder.JSON_V2);

        Tracing tracing = Tracing.newBuilder()
                .localServiceName("tracer-demo")
                .spanReporter(asyncReporter)
                .propagationFactory(ExtraFieldPropagation.newFactory(B3Propagation.FACTORY, "user-name"))
                .currentTraceContext(ThreadContextCurrentTraceContext.create())
                .build();

        Tracer tracer = tracing.tracer();
        Span span = tracer.newTrace().name("encode").start();
        try {
            doSomethingExpensive();
        } finally {
            span.finish();
        }


        Span twoPhase = tracer.newTrace().name("twoPhase").start();
        try {
            Span prepare = tracer.newChild(twoPhase.context()).name("prepare").start();
            try {
                prepare();
            } finally {
                prepare.finish();
            }
            Span commit = tracer.newChild(twoPhase.context()).name("commit").start();
            try {
                commit();
            } finally {
                commit.finish();
            }
        } finally {
            twoPhase.finish();
        }


        sleep(1000);

    }
    
    private static void doSomethingExpensive() {
        sleep(500);
    }

    private static void commit() {
        sleep(500);
    }

    private static void prepare() {
        sleep(500);
    }

    private static void sleep(long milliseconds) {
        try {
            TimeUnit.MILLISECONDS.sleep(milliseconds);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    }
}

启动Zipkin,然后运行TraceDemo,在Zipkin的UI界面中能查到两条跟踪信息

点击第一条跟踪信息,可以看到有一条Span(encode),耗时500ms左右 encode跟踪信息

本条跟踪信息对应的代码片段为:

Tracer tracer = tracing.tracer();
Span span = tracer.newTrace().name("encode").start();
try {
    doSomethingExpensive();
} finally {
    span.finish();
}

由Tracer创建一个新的Span,名为encode,然后调用start方法开始计时,之后运行一个比较耗时的方法doSomethingExpensive,最后调用finish方法结束计时,完成并记录一条跟踪信息。

这段代码实际上向Zipkin上报的数据为:

[
  {
    "traceId": "16661f6cb5d58903",
    "id": "16661f6cb5d58903",
    "name": "encode",
    "timestamp": 1510043590522358,
    "duration": 499867,
    "binaryAnnotations": [
      {
        "key": "lc",
        "value": "",
        "endpoint": {
          "serviceName": "tracer-demo",
          "ipv4": "192.168.99.1"
        }
      }
    ]
  }
]

然后我们再来看第二条稍微复杂的跟踪信息,可以看到一条名为twoPhase的Span,总耗时为1000ms,它有2个子Span,分别名为prepare和commit,两者分别耗时500ms

twoPhase跟踪信息

这条跟踪信息对应的代码片段为

Span twoPhase = tracer.newTrace().name("twoPhase").start();
try {
    Span prepare = tracer.newChild(twoPhase.context()).name("prepare").start();
    try {
	prepare();
    } finally {
	prepare.finish();
    }
    Span commit = tracer.newChild(twoPhase.context()).name("commit").start();
    try {
	commit();
    } finally {
	commit.finish();
    }
} finally {
    twoPhase.finish();
}

这段代码实际上向Zipkin上报的数据为:

[
  {
    "traceId": "89e051d5394b90b1",
    "id": "89e051d5394b90b1",
    "name": "twophase",
    "timestamp": 1510043591038983,
    "duration": 1000356,
    "binaryAnnotations": [
      {
        "key": "lc",
        "value": "",
        "endpoint": {
          "serviceName": "tracer-demo",
          "ipv4": "192.168.99.1"
        }
      }
    ]
  },
  {
    "traceId": "89e051d5394b90b1",
    "id": "60568c4903793b8d",
    "name": "prepare",
    "parentId": "89e051d5394b90b1",
    "timestamp": 1510043591039919,
    "duration": 499246,
    "binaryAnnotations": [
      {
        "key": "lc",
        "value": "",
        "endpoint": {
          "serviceName": "tracer-demo",
          "ipv4": "192.168.99.1"
        }
      }
    ]
  },
  {
    "traceId": "89e051d5394b90b1",
    "id": "ce14448169d01d2f",
    "name": "commit",
    "parentId": "89e051d5394b90b1",
    "timestamp": 1510043591539304,
    "duration": 499943,
    "binaryAnnotations": [
      {
        "key": "lc",
        "value": "",
        "endpoint": {
          "serviceName": "tracer-demo",
          "ipv4": "192.168.99.1"
        }
      }
    ]
  }
]

Span

首先看下Span的实现类RealSpan

该类依赖几个核心类

Recorder,用于记录Span

Reporter,用于上报Span给Zipkin

MutableSpan,Span的包装类,提供各种API操作Span

MutableSpanMap,以TraceContext为Key,MutableSpan为Value的Map结构,用于内存中存放所有的Span

RealSpan两个核心方法start, finish

public Span start(long timestamp) {
  recorder().start(context(), timestamp);
  return this;
}

public void finish(long timestamp) {
  recorder().finish(context(), timestamp);
}

分别调用Recorder的start和finish方法,获取跟TraceContext绑定的Span信息,记录开始时间和结束时间,并在结束时,调用reporter的report方法,上报给Zipkin

public void start(TraceContext context, long timestamp) {
  if (noop.get()) return;
  spanMap.getOrCreate(context).start(timestamp);
} 

public void finish(TraceContext context, long finishTimestamp) {
  MutableSpan span = spanMap.remove(context);
  if (span == null || noop.get()) return;
  synchronized (span) {
    span.finish(finishTimestamp);
    reporter.report(span.toSpan());
  }
}

BoundedAsyncReporter

Reporter的实现类AsyncReporter,而AsyncReporter的实现类是BoundedAsyncReporter

static final class BoundedAsyncReporter extends AsyncReporter {
    static final Logger logger = Logger.getLogger(BoundedAsyncReporter.class.getName());
    final AtomicBoolean closed = new AtomicBoolean(false);
    final BytesEncoder encoder;
    final ByteBoundedQueue pending;
    final Sender sender;
    final int messageMaxBytes;
    final long messageTimeoutNanos;
    final long closeTimeoutNanos;
    final CountDownLatch close;
    final ReporterMetrics metrics;

    BoundedAsyncReporter(Builder builder, BytesEncoder encoder) {
      this.pending = new ByteBoundedQueue(builder.queuedMaxSpans, builder.queuedMaxBytes);
      this.sender = builder.sender;
      this.messageMaxBytes = builder.messageMaxBytes;
      this.messageTimeoutNanos = builder.messageTimeoutNanos;
      this.closeTimeoutNanos = builder.closeTimeoutNanos;
      this.close = new CountDownLatch(builder.messageTimeoutNanos > 0 ? 1 : 0);
      this.metrics = builder.metrics;
      this.encoder = encoder;
    }
}

BoundedAsyncReporter中的几个重要的类:

  • BytesEncoder - Span的编码器,将Span编码成二进制,便于sender发送给Zipkin
  • ByteBoundedQueue - 类似于BlockingQueue,是一个既有数量限制,又有字节数限制的阻塞队列
  • Sender - 将编码后的二进制数据,发送给Zipkin
  • ReporterMetrics - Span的report相关的统计信息
  • BufferNextMessage - Consumer,Span信息的消费者,依靠Sender上报Span信息
    public  AsyncReporter build(BytesEncoder encoder) {
      if (encoder == null) throw new NullPointerException("encoder == null");

      if (encoder.encoding() != sender.encoding()) {
        throw new IllegalArgumentException(String.format(
            "Encoder doesn't match Sender: %s %s", encoder.encoding(), sender.encoding()));
      }

      final BoundedAsyncReporter result = new BoundedAsyncReporter<>(this, encoder);

      if (messageTimeoutNanos > 0) { // Start a thread that flushes the queue in a loop.
        final BufferNextMessage consumer =
            new BufferNextMessage(sender, messageMaxBytes, messageTimeoutNanos);
        final Thread flushThread = new Thread(() -> {
          try {
            while (!result.closed.get()) {
              result.flush(consumer);
            }
          } finally {
            for (byte[] next : consumer.drain()) result.pending.offer(next);
            result.close.countDown();
          }
        }, "AsyncReporter(" + sender + ")");
        flushThread.setDaemon(true);
        flushThread.start();
      }
      return result;
    }

当messageTimeoutNanos大于0时,启动一个守护线程flushThread,一直循环调用BoundedAsyncReporter的flush方法,将内存中的Span信息上报给Zipkin 而当messageTimeoutNanos等于0时,客户端需要手动调用flush方法来上报Span信息

再来看下BoundedAsyncReporter中的close方法

    @Override public void close() {
      if (!closed.compareAndSet(false, true)) return; // already closed
      try {
        // wait for in-flight spans to send
        if (!close.await(closeTimeoutNanos, TimeUnit.NANOSECONDS)) {
          logger.warning("Timed out waiting for in-flight spans to send");
        }
      } catch (InterruptedException e) {
        logger.warning("Interrupted waiting for in-flight spans to send");
        Thread.currentThread().interrupt();
      }
      int count = pending.clear();
      if (count > 0) {
        metrics.incrementSpansDropped(count);
        logger.warning("Dropped " + count + " spans due to AsyncReporter.close()");
      }
    }

这个close方法和FlushThread中while循环相呼应,在close方法中,首先将closed变量置为true,然后调用close.await(),等待close信号量(CountDownLatch)的释放,此处代码会阻塞,一直到FlushThread中finally中调用result.close.countDown(); 而在close方法中将closed变量置为true后,FlushThread中的while循环将结束执行,然后执行finally代码块,系统会将内存中还未上报的Span,添加到queue(result.pending)中,然后调用result.close.countDown(); close方法中阻塞的代码会继续执行,将调用metrics.incrementSpansDropped(count)将这些Span的数量添加到metrics统计信息中

@Override public void report(S span) {
  if (span == null) throw new NullPointerException("span == null");

  metrics.incrementSpans(1);
  byte[] next = encoder.encode(span);
  int messageSizeOfNextSpan = sender.messageSizeInBytes(Collections.singletonList(next));
  metrics.incrementSpanBytes(next.length);
  if (closed.get() ||
      // don't enqueue something larger than we can drain
      messageSizeOfNextSpan > messageMaxBytes ||
      !pending.offer(next)) {
    metrics.incrementSpansDropped(1);
  }
}

前面看到在Recorder的finish方法中,会调用Reporter的report方法,此处report方法,将span转化成字节数组,然后计算出messageSize,添加到queue(pending)中,并记录相应的统计信息

接下来看看两个flush方法,其中flush()方法,是public的,供外部手动调用,而flush(BufferNextMessage bundler)是在FlushThread中循环调用

@Override public final void flush() {
  flush(new BufferNextMessage(sender, messageMaxBytes, 0));
}

void flush(BufferNextMessage bundler) {
  if (closed.get()) throw new IllegalStateException("closed");

  //将队列中的数据,全部提取到BufferNextMessage中,直到buffer(bundler)满为止
  pending.drainTo(bundler, bundler.remainingNanos());

  // record after flushing reduces the amount of gauge events vs on doing this on report
  metrics.updateQueuedSpans(pending.count);
  metrics.updateQueuedBytes(pending.sizeInBytes);

  // loop around if we are running, and the bundle isn't full
  // if we are closed, try to send what's pending
  if (!bundler.isReady() && !closed.get()) return;

  // Signal that we are about to send a message of a known size in bytes
  metrics.incrementMessages();
  metrics.incrementMessageBytes(bundler.sizeInBytes());
  List nextMessage = bundler.drain();

  try {
    sender.sendSpans(nextMessage).execute();
  } catch (IOException | RuntimeException | Error t) {
    // In failure case, we increment messages and spans dropped.
    int count = nextMessage.size();
    Call.propagateIfFatal(t);
    metrics.incrementMessagesDropped(t);
    metrics.incrementSpansDropped(count);
    if (logger.isLoggable(FINE)) {
      logger.log(FINE,
          format("Dropped %s spans due to %s(%s)", count, t.getClass().getSimpleName(),
              t.getMessage() == null ? "" : t.getMessage()), t);
    }
    // Raise in case the sender was closed out-of-band.
    if (t instanceof IllegalStateException) throw (IllegalStateException) t;
  }
}

flush中大致分下面几步

  1. 先将队列pending中的数据,全部提取到BufferNextMessage(bundler)中,直到bundler满为止
  2. 当bundler准备好,即isReady()返回true,将bundler中的message全部取出来
  3. 将取出来的所有message,调用Sender的sendSpans方法,发送到Zipkin

ByteBoundedQueue

类似于BlockingQueue,是一个既有数量限制,又有字节数限制的阻塞队列,提供了offer,drainTo,clear三个方法,供调用者向queue里存放,提取和清空数据

final class ByteBoundedQueue {

  final ReentrantLock lock = new ReentrantLock(false);
  final Condition available = lock.newCondition();

  final int maxSize;
  final int maxBytes;

  final byte[][] elements;
  int count;
  int sizeInBytes;
  int writePos;
  int readPos;

  ByteBoundedQueue(int maxSize, int maxBytes) {
    this.elements = new byte[maxSize][];
    this.maxSize = maxSize;
    this.maxBytes = maxBytes;
  }
}

ByteBoundedQueue接受两个int参数,maxSize是queue接受的最大数量,maxBytes是queue接受的最大字节数 ByteBoundedQueue中使用一个二维byte数组elements来存储message,并使用writePos和readPos两个游标,分别记录写和读的位置 ByteBoundedQueue中使用了最典型的可重入锁ReentrantLock,使offer,drainTo,clear等方法是线程安全的

/**
 * Returns true if the element could be added or false if it could not due to its size.
 */
boolean offer(byte[] next) {
  lock.lock();
  try {
    if (count == elements.length) return false;
    if (sizeInBytes + next.length > maxBytes) return false;

    elements[writePos++] = next;

    if (writePos == elements.length) writePos = 0; // circle back to the front of the array

    count++;
    sizeInBytes += next.length;

    available.signal(); // alert any drainers
    return true;
  } finally {
    lock.unlock();
  }
}

offer方法是添加message到queue中,使用了标准的try-lock结构,即先获取锁,然后finally里释放锁,在获取锁以后 当count等于elements.length时,意味着queue是满的,则不能继续添加 当sizeInBytes + next.length > maxBytes时,意味着该消息加进队列会超出队列字节大小限制,也不能添加新message 如果上面两个条件都不满足,则表明可以继续添加message,将writePos+1,并将message放于writePos+1处 当writePos到达数组尾部,则将writePos置为0,让下一次添加从数组头部开始 然后将count计数器加1,并更新字节总数 最后调用available.signal()来通知其他在lock上等待的线程(在drainTo方法中阻塞的线程)继续竞争线程资源

/** Blocks for up to nanosTimeout for elements to appear. Then, consume as many as possible. */
int drainTo(Consumer consumer, long nanosTimeout) {
  try {
    // This may be called by multiple threads. If one is holding a lock, another is waiting. We
    // use lockInterruptibly to ensure the one waiting can be interrupted.
    lock.lockInterruptibly();
    try {
      long nanosLeft = nanosTimeout;
      while (count == 0) {
        if (nanosLeft <= 0) return 0;
        nanosLeft = available.awaitNanos(nanosLeft);
      }
      return doDrain(consumer);
    } finally {
      lock.unlock();
    }
  } catch (InterruptedException e) {
    return 0;
  }
}

drainTo方法是提取message到Consumer中消费,如果当时queue里没有消息,则每次等待nanosTimeout,直到queue里存入消息为止 当while循环退出,表明queue中已经有新的message添加进来,可以消费,则调用doDrain方法。

int doDrain(Consumer consumer) {
  int drainedCount = 0;
  int drainedSizeInBytes = 0;
  while (drainedCount < count) {
    byte[] next = elements[readPos];

    if (next == null) break;
    if (consumer.accept(next)) {
      drainedCount++;
      drainedSizeInBytes += next.length;

      elements[readPos] = null;
      if (++readPos == elements.length) readPos = 0; // circle back to the front of the array
    } else {
      break;
    }
  }
  count -= drainedCount;
  sizeInBytes -= drainedSizeInBytes;
  return drainedCount;
}

doDrain里依然是一个while循环,当drainedCount小于count,即提取的message数量总数小于queue里消息总数时,尝试调用consumer.accept方法 如果accept方法返回true,则将drainedCount加1,并且drainedSizeInBytes加上当前消息的字节数 如果accept方法返回false,则跳出循环,将queue的count减掉提取的总消息数drainedCount,sizeInBytes减去提取的总字节数drainedSizeInBytes

int clear() {
  lock.lock();
  try {
    int result = count;
    count = sizeInBytes = readPos = writePos = 0;
    Arrays.fill(elements, null);
    return result;
  } finally {
    lock.unlock();
  }
}

clear方法,清空队列,这个方法比较简单,就是将所有东西清零,该方法在Reporter的close方法中会被使用

BufferNextMessage

BufferNextMessage是ByteBoundedQueue.Consumer的默认实现

final class BufferNextMessage implements ByteBoundedQueue.Consumer {
  private final Sender sender;
  private final int maxBytes;
  private final long timeoutNanos;
  private final List buffer = new LinkedList<>();

  long deadlineNanoTime;
  int sizeInBytes;
  boolean bufferFull;

  BufferNextMessage(Sender sender, int maxBytes, long timeoutNanos) {
    this.sender = sender;
    this.maxBytes = maxBytes;
    this.timeoutNanos = timeoutNanos;
  }
}

BufferNextMessage中使用一个LinkedList来存储接收的messages

  @Override
  public boolean accept(byte[] next) {
    buffer.add(next); // speculatively add to the buffer so we can size it
    int x = sender.messageSizeInBytes(buffer);
    int y = maxBytes;
    int includingNextVsMaxBytes = (x < y) ? -1 : ((x == y) ? 0 : 1);

    // If we can fit queued spans and the next into one message...
    if (includingNextVsMaxBytes <= 0) {
      sizeInBytes = x;

      if (includingNextVsMaxBytes == 0) {
        bufferFull = true;
      }
      return true;
    } else {
      buffer.remove(buffer.size() - 1);
      return false; // we couldn't fit the next message into this buffer
    }
  }

accept方法,先将message放入buffer,然后调用sender的messageSizeInBytes方法统计下所有buffer消息的总字节数includingNextVsMaxBytes 当includingNextVsMaxBytes大于该buffer的最大字节数maxBytes,则将加入到buffer的message移除 当includingNextVsMaxBytes等于该buffer的最大字节数maxBytes,则将该buffer标记为已满状态,即bufferFull = true

  long remainingNanos() {
    if (buffer.isEmpty()) {
      deadlineNanoTime = System.nanoTime() + timeoutNanos;
    }
    return Math.max(deadlineNanoTime - System.nanoTime(), 0);
  }

  boolean isReady() {
    return bufferFull || remainingNanos() <= 0;
  }

remainingNanos方法中,当buffer为空,则重置一个deadlineNanoTime,其值为当前系统时间加上timeoutNanos,当系统时间超过这个时间或者buffer满了的时候, isReady会返回true,即buffer为准备就绪状态

  List drain() {
    if (buffer.isEmpty()) return Collections.emptyList();
    ArrayList result = new ArrayList<>(buffer);
    buffer.clear();
    sizeInBytes = 0;
    bufferFull = false;
    deadlineNanoTime = 0;
    return result;
  }

drain方法返回buffer里的所有数据,并将buffer清空

isReady方法和drain方法,在BoundedAsyncReporter的flush方法中会被使用

void flush(BufferNextMessage bundler) {
	// ...
	if (!bundler.isReady() && !closed.get()) return;
	// ...
	List nextMessage = bundler.drain();
	// ...
	sender.sendSpans(nextMessage).execute();
}

因为flush是会一直不间断被调用,而这里先调用bundler.isReady()方法,当返回true后才取出所有堆积的消息,一起打包发送给zipkin提高效率

再回过头来看看BoundedAsyncReporter里手动flush方法

@Override public final void flush() {
  flush(new BufferNextMessage(sender, messageMaxBytes, 0));
}

在我们分析完BufferNextMessage源代码后,我们很容易得出结论:这里构造BufferNextMessage传入的timeoutNanos为0,所以BufferNextMessage的isReady()方法会永远返回true。 这意味着每次我们手动调用flush方法,会立即将queue的数据用BufferNextMessage填满,并打包发送给Zipkin,至于queue里剩下的数据,需要等到下次FlushThread循环执行flush方法的时候被发送

至此,我们已经分析过Tracer和Span相关的源代码,这对我们后续看Brave和其他框架整合有很大帮助: Span/RealSpan Recorder Reporter/AsyncReporter/BoundedAsyncReporter BufferNextMessage ByteBoundedQueue

在下一篇博文中,会继续分析Tracing的初始化过程,以及相关源代码

转载于:https://my.oschina.net/mozhu/blog/1585181

你可能感兴趣的:(java,数据库,ui)