R中计算摘要统计量

This tutorial introduces how to easily compute statistcal summaries in R using the dplyr package.

You will learn, how to:

Compute summary statistics for ungrouped data, as well as, for data that are grouped by one or multiple variables. R functions: summarise() and group_by().

Summarise multiple variable columns. R functions:

summarise_all(): apply summary functions to every columns in the data frame.

summarise_at(): apply summary functions to specific columns selected with a character vector

summarise_if(): apply summary functions to columns selected with a predicate function that returns TRUE.

library(tidyverse)

my_data <- as_tibble(iris)

my_data

未分组数据的汇总统计

#Compute the mean of Sepal.Length and Petal.Length as well as the number of observations using the function n():

my_data %>%  summarise( count = n(), mean_sep = mean(Sepal.Length, na.rm =TRUE), mean_pet = mean(Petal.Length, na.rm =TRUE) )

注意,计算均数前,我们使用了附加参数  na.rm  为去除NAs。


分组数据的汇总统计

关键R函数: group_by() 和 summarise()

单变量组

my_data %>%

  group_by(Species) %>%

  summarise(

          count = n(),

          mean_sep = mean(Sepal.Length),

          mean_pet = mean(Petal.Length)

            )

注意,可以使用向前管道运算符组合多个操作:%>%。例如,x%>%f 等于f(x)。

多变量分组

# ToothGrowth demo data sets

head(ToothGrowth)

# Summarize

ToothGrowth %>%group_by(supp, dose) %>%  summarise(    n = n(),    mean = mean(len),    sd = sd(len) )

计算多个变量的统计量

关键R函数: summarise_all(), summarise_at() 和summarise_if() 

形式如下:

summarise_all(.tbl, .funs,...)

summarise_if(.tbl, .predicate, .funs,...)

summarise_at(.tbl, .vars, .funs,...)

.tbl: a tbl data frame

.funs: List of function calls generated by funs(), or a character vector of function names, or simply a function.

…: Additional arguments for the function calls in .funs.

.predicate: A predicate function to be applied to the columns or a logical vector. The variables for which .predicate is or returns TRUE are selected.


总结所有变量-计算所有变量的平均值:

my_data %>%

  group_by(Species) %>%

  summarise_all(mean)


Summarise specific variables selected with a character vector:

my_data %>%  group_by(Species) %>%  summarise_at(c("Sepal.Length","Sepal.Width"), mean, na.rm =TRUE)

Summarise specific variables selected with a predicate function:

my_data %>%  group_by(Species) %>%  summarise_if(is.numeric, mean, na.rm =TRUE)



Useful statistical summary functions

This section presents some R functions for computing statistical summaries.

Measure of location:

mean(x): sum of x divided by the length

median(x): 50% of x is above and 50% is below

Measure of variation:

sd(x): standard deviation

IQR(x): interquartile range (robust equivalent of sd when outliers are present in the data)

mad(x): median absolute deviation (robust equivalent of sd when outliers are present in the data)

Measure of rank:

min(x): minimum value of x

max(x): maximum value of x

quantile(x, 0.25): 25% of x is below this value

Measure of position:

first(x): equivalent to x[1]

nth(x, 2): equivalent to n<-2; x[n]

last(x): equivalent to x[length(x)]

Counts:

n(x): the number of element in x

sum(!is.na(x)): count non-missing values

n_distinct(x): count the number of unique value

Counts and proportions of logical values:

sum(x > 10): count the number of elements where x > 10

mean(y == 0): proportion of elements where y = 0

Summary

In this tutorial, we describe how to easily compute statistical summaries using the R functions summarise() and group_by() [in dplyr package].

你可能感兴趣的:(R中计算摘要统计量)