C++模板库STL基础

学STL能干什么?

以 C++ 定义数组的操作为例,在 C++ 中如果定义一个数组,可以采用如下方式:

int a[n];

这种定义数组的方法需要事先确定好数组的长度,即 n 必须为常量,这意味着,如果在实际应用中无法确定数组长度,则一般会将数组长度设为可能的最大值,但这极有可能导致存储空间的浪费。

所以除此之外,还可以采用在堆空间中动态申请内存的方法,此时长度可以是变量:

int *p = new int[n];

这种定义方式可根据变量 n 动态申请内存,不会出现存储空间浪费的问题。但是,如果程序执行过程中出现空间不足的情况时,则需要加大存储空间,此时需要进行如下操作:

  1. 新申请一个较大的内存空间,即执行int * temp = new int[m];
  2. 将原内存空间的数据全部复制到新申请的内存空间中,即执行memecpy(temp, p, sizeof(int)*n);
  3. 将原来的堆空间释放,即执行delete [] p; p = temp;


而完成相同的操作,如果采用 STL 标准库,则会简单很多,因为大多数操作细节将不需要程序员关心。下面是使用向量模板类 vector 实现以上功能的示例:

vector  a; //定义 a 数组,当前数组长度为 0,但和普通数组不同的是,此数组 a 可以根据存储数据的数量自动变长。
//向数组 a 中添加 10 个元素
for (int i = 0; i < 10 ; i++)
a.push_back(i)
//还可以手动调整数组 a 的大小
a.resize(100);
a[90] = 100;
//还可以直接删除数组 a 中所有的元素,此时 a 的长度变为 0
a.clear();
//重新调整 a 的大小为 20,并存储 20 个 -1 元素。
a.resize(20, -1)

通常认为,STL 是由容器、算法、迭代器、函数对象、适配器、内存分配器这 6 部分构成,其中后面 4 部分是为前 2 部分服务的

表 1 STL 组成结构
STL的组成 含义
容器 一些封装数据结构的模板类,例如 vector 向量容器、list 列表容器等。
算法 STL 提供了非常多(大约 100 个)的数据结构算法,它们都被设计成一个个的模板函数,这些算法在 std 命名空间中定义,其中大部分算法都包含在头文件 中,少部分位于头文件 中。
迭代器 在 C++ STL 中,对容器中数据的读和写,是通过迭代器完成的,扮演着容器和算法之间的胶合剂。
函数对象 如果一个类将 () 运算符重载为成员函数,这个类就称为函数对象类,这个类的对象就是函数对象(又称仿函数)。
适配器 可以使一个类的接口(模板的参数)适配成用户指定的形式,从而让原本不能在一起工作的两个类工作在一起。值得一提的是,容器、迭代器和函数都有适配器。
内存分配器 为容器类模板提供自定义的内存申请和释放功能,由于往往只有高级用户才有改变内存分配策略的需求,因此内存分配器对于一般用户来说,并不常用。

 STL头文件

 在实际的开发过程中,合理组织数据的存取与选择处理数据的算法同等重要,存取数据的方式往往会直接影响到对它们进行增删改查操作的复杂程度和时间消耗。事实上,当程序中存在对时耗要求很高的部分时,数据结构的选择就显得尤为重要,有时甚至直接影响程序执行的成败。

值得一提的是,之前我们一直在不断地重复实现一些诸如链表、集合等等这些常见的数据结构,这些代码使用起来往往都十分类似,只是为了适应不同数据的变化,可能需要在一些细节上做不同的处理。

简单的理解容器,它就是一些模板类的集合,但和普通模板类不同的是,容器中封装的是组织数据的方法(也就是数据结构)。STL 提供有 3 类标准容器,分别是序列容器、排序容器和哈希容器

容器种类 功能
序列容器 主要包括 vector 向量容器、list 列表容器以及 deque 双端队列容器。之所以被称为序列容器,是因为元素在容器中的位置同元素的值无关,即容器不是排序的。将元素插入容器时,指定在什么位置,元素就会位于什么位置。
排序容器 包括 set 集合容器、multiset多重集合容器、map映射容器以及 multimap 多重映射容器。排序容器中的元素默认是由小到大排序好的,即便是插入元素,元素也会插入到适当位置。所以关联容器在查找时具有非常好的性能。
哈希容器 C++ 11 新加入 4 种关联式容器,分别是 unordered_set 哈希集合、unordered_multiset 哈希多重集合、unordered_map 哈希映射以及 unordered_multimap 哈希多重映射。和排序容器不同,哈希容器中的元素是未排序的,元素的位置由哈希函数确定。

 无论是序列容器还是关联容器,最常做的操作无疑是遍历容器中存储的元素,而实现此操作,多数情况会选用“迭代器(iterator)”来实现。那么,迭代器到底是什么呢?

我们知道,尽管不同容器的内部结构各异,但它们本质上都是用来存储大量数据的,换句话说,都是一串能存储多个数据的存储单元。因此,诸如数据的排序、查找、求和等需要对数据进行遍历的操作方法应该是类似的。

既然类似,完全可以利用泛型技术,将它们设计成适用所有容器的通用算法,从而将容器和算法分离开。但实现此目的需要有一个类似中介的装置,它除了要具有对容器进行遍历读写数据的能力之外,还要能对外隐藏容器的内部差异,从而以统一的界面向算法传送数据。

这是泛型思维发展的必然结果,于是迭代器就产生了。简单来讲,迭代器和 C++ 的指针非常类似,它可以是需要的任意类型,通过迭代器可以指向容器中的某个元素,如果需要,还可以对该元素进行读/写操作

1) 前向迭代器(forward iterator)
假设 p 是一个前向迭代器,则 p 支持 ++p,p++,*p 操作,还可以被复制或赋值,可以用 == 和 != 运算符进行比较。此外,两个正向迭代器可以互相赋值。

2) 双向迭代器(bidirectional iterator)
双向迭代器具有正向迭代器的全部功能,除此之外,假设 p 是一个双向迭代器,则还可以进行 --p 或者 p-- 操作(即一次向后移动一个位置)。

3) 随机访问迭代器(random access iterator)
随机访问迭代器具有双向迭代器的全部功能。除此之外,假设 p 是一个随机访问迭代器,i 是一个整型变量或常量,则 p 还支持以下操作:

  • p+=i:使得 p 往后移动 i 个元素。
  • p-=i:使得 p 往前移动 i 个元素。
  • p+i:返回 p 后面第 i 个元素的迭代器。
  • p-i:返回 p 前面第 i 个元素的迭代器。
  • p[i]:返回 p 后面第 i 个元素的引用。


此外,两个随机访问迭代器 p1、p2 还可以用 <、>、<=、>= 运算符进行比较。另外,表达式 p2-p1 也是有定义的,其返回值表示 p2 所指向元素和 p1 所指向元素的序号之差(也可以说是 p2 和 p1 之间的元素个数减一)。

表 1 所示,是 C++ 11 标准中不同容器指定使用的迭代器类型。
 

表 1 不同容器的迭代器
容器 对应的迭代器类型
array 随机访问迭代器
vector 随机访问迭代器
deque 随机访问迭代器
list 双向迭代器
set / multiset 双向迭代器
map / multimap 双向迭代器
forward_list 前向迭代器
unordered_map / unordered_multimap 前向迭代器
unordered_set / unordered_multiset 前向迭代器
stack 不支持迭代器
queue 不支持迭代器

注意,容器适配器 stack 和 queue 没有迭代器,它们包含有一些成员函数,可以用来对元素进行访问。

 

迭代器的定义方式

尽管不同容器对应着不同类别的迭代器,但这些迭代器有着较为统一的定义方式,具体分为 4 种,如表 1 所示。
 

表 2 迭代器的 4 种定义方式
迭代器定义方式 具体格式
正向迭代器 容器类名::iterator  迭代器名;
常量正向迭代器 容器类名::const_iterator  迭代器名;
反向迭代器 容器类名::reverse_iterator  迭代器名;
常量反向迭代器 容器类名::const_reverse_iterator  迭代器名;

值得一提的是,表 2 中的反向迭代器全称为 "反向迭代器适配器",后续章节会做详细讲解,这里读者只需要知道其用法即可。

通过定义以上几种迭代器,就可以读取它指向的元素,*迭代器名就表示迭代器指向的元素。其中,常量迭代器和非常量迭代器的分别在于,通过非常量迭代器还能修改其指向的元素。另外,反向迭代器和正向迭代器的区别在于:

  • 对正向迭代器进行 ++ 操作时,迭代器会指向容器中的后一个元素;
  • 而对反向迭代器进行 ++ 操作时,迭代器会指向容器中的前一个元素。


注意,以上 4 种定义迭代器的方式,并不是每个容器都适用。有一部分容器同时支持以上 4 种方式,比如 array、deque、vector;而有些容器只支持其中部分的定义方式,例如 forward_list 容器只支持定义正向迭代器,不支持定义反向迭代器。

//遍历 vector 容器。
#include 
//需要引入 vector 头文件
#include 
using namespace std;
int main()
{
    vector v{1,2,3,4,5,6,7,8,9,10}; //v被初始化成有10个元素
    cout << "第一种遍历方法:" << endl;
    //size返回元素个数
    for (int i = 0; i < v.size(); ++i)
        cout << v[i] <<" "; //像普通数组一样使用vector容器
    //创建一个正向迭代器,当然,vector也支持其他 3 种定义迭代器的方式
    
       cout << endl << "第二种遍历方法:" << endl;
       vector::iterator i;
    //用 != 比较两个迭代器
    for (i = v.begin(); i != v.end(); ++i)
        cout << *i << " ";
    
       cout << endl << "第三种遍历方法:" << endl;
    for (i = v.begin(); i < v.end(); ++i) //用 < 比较两个迭代器
        cout << *i << " ";
   
       cout << endl << "第四种遍历方法:" << endl;
    i = v.begin();
    while (i < v.end()) { //间隔一个输出
        cout << *i << " ";
        i += 2; // 随机访问迭代器支持 "+= 整数"  的操作
    }
}

你可能感兴趣的:(c++,c++,算法,数据结构)