Redis 有 5 种基础数据结构,它们分别是:string(字符串)、list(列表)、hash(字典)、set(集合) 和 zset(有序集合)。这 5 种是 Redis 相关知识中最基础、最重要的部分。
Redis 中的字符串是一种 动态字符串,这意味着使用者可以修改,它的底层实现有点类似于 Java 中的 ArrayList,有一个字符数组,从源码的 sds.h/sdshdr 文件 中可以看到 Redis 底层对于字符串的定义 SDS,即 Simple Dynamic String 结构:
/* Note: sdshdr5 is never used, we just access the flags byte directly.
* However is here to document the layout of type 5 SDS strings. */
struct __attribute__ ((__packed__)) sdshdr5 {
unsigned char flags; /* 3 lsb of type, and 5 msb of string length */
char buf[];
};
struct __attribute__ ((__packed__)) sdshdr8 {
uint8_t len; /* used */
uint8_t alloc; /* excluding the header and null terminator */
unsigned char flags; /* 3 lsb of type, 5 unused bits */
char buf[];
};
struct __attribute__ ((__packed__)) sdshdr16 {
uint16_t len; /* used */
uint16_t alloc; /* excluding the header and null terminator */
unsigned char flags; /* 3 lsb of type, 5 unused bits */
char buf[];
};
struct __attribute__ ((__packed__)) sdshdr32 {
uint32_t len; /* used */
uint32_t alloc; /* excluding the header and null terminator */
unsigned char flags; /* 3 lsb of type, 5 unused bits */
char buf[];
};
struct __attribute__ ((__packed__)) sdshdr64 {
uint64_t len; /* used */
uint64_t alloc; /* excluding the header and null terminator */
unsigned char flags; /* 3 lsb of type, 5 unused bits */
char buf[];
};
你会发现同样一组结构 Redis 使用泛型定义了好多次,为什么不直接使用 int 类型呢?
因为当字符串比较短的时候,len 和 alloc 可以使用 byte 和 short 来表示,Redis 为了对内存做极致的优化,不同长度的字符串使用不同的结构体来表示。
SDS 与 C 字符串的区别:
为什么不考虑直接使用 C 语言的字符串呢?因为 C 语言这种简单的字符串表示方式 不符合 Redis 对字符串在安全性、效率以及功能方面的要求。我们知道,C 语言使用了一个长度为 N+1 的字符数组来表示长度为 N 的字符串,并且字符数组最后一个元素总是 ‘\0’。(下图就展示了 C 语言中值为 “Redis” 的一个字符数组)
这样简单的数据结构可能会造成以下一些问题:
我们以追加字符串的操作举例,Redis 源码如下:
/* Append the specified binary-safe string pointed by 't' of 'len' bytes to the
* end of the specified sds string 's'.
* * After the call, the passed sds string is no longer valid and all the
* references must be substituted with the new pointer returned by the call. */
sds sdscatlen(sds s, const void *t, size_t len) {
// 获取原字符串的长度
size_t curlen = sdslen(s);
// 按需调整空间,如果容量不够容纳追加的内容,就会重新分配字节数组并复制原字符串的内容到新数组中
s = sdsMakeRoomFor(s,len);
if (s == NULL) return NULL; // 内存不足
memcpy(s+curlen, t, len); // 追加目标字符串到字节数组中
sdssetlen(s, curlen+len); // 设置追加后的长度
s[curlen+len] = '\0'; // 让字符串以 \0 结尾,便于调试打印
return s;
}
对字符串的基本操作:
安装好 Redis,我们可以使用 redis-cli 来对 Redis 进行命令行的操作,当然 Redis 官方也提供了在线的调试器,你也可以在里面敲入命令进行操作:http://try.redis.io/#run
> SET key value
OK
> GET key
"value"
正如你看到的,我们通常使用 SET 和 GET 来设置和获取字符串值。
值可以是任何种类的字符串(包括二进制数据),例如你可以在一个键下保存一张 .jpeg 图片,只需要注意不要超过 512 MB 的最大限度就好了。
当 key 存在时,SET 命令会覆盖掉你上一次设置的值:
> SET key newValue
OK
> GET key
"newValue"
另外你还可以使用== EXISTS 和 DEL 关键字来查询是否存在和删除键值对==:
> EXISTS key
(integer) 1
> DEL key
(integer) 1
> GET key
(nil)
> SET key1 value1
OK
> SET key2 value2
OK
> MGET key1 key2 key3 # 返回一个列表
1) "value1"
2) "value2"
3) (nil)
> MSET key1 value1 key2 value2
> MGET key1 key2
1) "value1"
2) "value2"
可以对 key 设置过期时间,到时间会被自动删除,这个功能常用来控制缓存的失效时间。(过期可以是任意数据结构)
> SET key value1
> GET key
"value1"
> EXPIRE name 5 # 5s 后过期
... # 等待 5s
> GET key
(nil)
等价于 SET + EXPIRE 的 SETNX 命令:
> SETNX key value1
... # 等待 5s 后获取
> GET key
(nil)
> SETNX key value1 # 如果 key 不存在则 SET 成功
(integer) 1
> SETNX key value1 # 如果 key 存在则 SET 失败
(integer) 0
> GET key
"value" # 没有改变
如果 value 是一个整数,还可以对它使用 INCR 命令进行 原子性 的自增操作,这意味着及时多个客户端对同一个 key 进行操作,也决不会导致竞争的情况:
> SET counter 100
> INCR count
(interger) 101
> INCRBY counter 50
(integer) 151
对字符串,还有一个 GETSET 比较让人觉得有意思,它的功能跟它名字一样:为 key 设置一个值并返回原值:
> SET key value
> GETSET key value1
"value"
这可以对于某一些需要隔一段时间就统计的 key 很方便的设置和查看,例如:系统每当由用户进入的时候你就是用 INCR 命令操作一个 key,当需要统计时候你就把这个 key 使用 GETSET 命令重新赋值为 0,这样就达到了统计的目的。
Redis 的列表相当于 Java 语言中的 LinkedList,注意它是链表而不是数组。这意味着 list 的插入和删除操作非常快,时间复杂度为 O(1),但是索引定位很慢,时间复杂度为 O(n)。
我们可以从源码的 adlist.h/listNode 来看到对其的定义:
/* Node, List, and Iterator are the only data structures used currently. */
typedef struct listNode {
struct listNode *prev;
struct listNode *next;
void *value;
} listNode;
typedef struct listIter {
listNode *next;
int direction;
} listIter;
typedef struct list {
listNode *head;
listNode *tail;
void *(*dup)(void *ptr);
void (*free)(void *ptr);
int (*match)(void *ptr, void *key);
unsigned long len;
} list;
可以看到,多个 listNode 可以通过 prev 和 next 指针组成双向链表:
虽然仅仅使用多个 listNode 结构就可以组成链表,但是使用 adlist.h/list 结构来持有链表的话,操作起来会更加方便:
链表的基本操作:
示范:
> rpush mylist A
(integer) 1
> rpush mylist B
(integer) 2
> lpush mylist first
(integer) 3
> lrange mylist 0 -1 # -1 表示倒数第一个元素, 这里表示从第一个元素到最后一个元素,即所有
1) "first"
2) "A"
3) "B"
list 实现队列:
队列是先进先出的数据结构,常用于消息排队和异步逻辑处理,它会确保元素的访问顺序:
> RPUSH books python java golang
(integer) 3
> LPOP books
"python"
> LPOP books
"java"
> LPOP books
"golang"
> LPOP books
(nil)
list 实现栈:
栈是先进后出的数据结构,跟队列正好相反:
> RPUSH books python java golang
> RPOP books
"golang"
> RPOP books
"java"
> RPOP books
"python"
> RPOP books
(nil)
性能总结:
Redis 中的字典相当于 Java 中的 HashMap,内部实现也差不多类似,都是通过 "数组 + 链表" 的链地址法来解决部分 哈希冲突,同时这样的结构也吸收了两种不同数据结构的优点。源码定义如 dict.h/dictht 定义:
typedef struct dictht {
// 哈希表数组
dictEntry **table;
// 哈希表大小
unsigned long size;
// 哈希表大小掩码,用于计算索引值,总是等于 size - 1
unsigned long sizemask;
// 该哈希表已有节点的数量
unsigned long used;
} dictht;
typedef struct dict {
dictType *type;
void *privdata;
// 内部有两个 dictht 结构
dictht ht[2];
long rehashidx; /* rehashing not in progress if rehashidx == -1 */
unsigned long iterators; /* number of iterators currently running */
} dict;
table 属性是一个数组,数组中的每个元素都是一个指向 dict.h/dictEntry 结构的指针,而每个 dictEntry 结构保存着一个键值对:
typedef struct dictEntry {
// 键
void *key;
// 值
union {
void *val;
uint64_t u64;
int64_t s64;
double d;
} v;
// 指向下个哈希表节点,形成链表
struct dictEntry *next;
} dictEntry;
可以从上面的源码中看到,实际上字典结构的内部包含两个 hashtable,通常情况下只有一个 hashtable 是有值的,但是在字典扩容缩容时,需要分配新的 hashtable,然后进行 渐进式搬迁 (下面说原因)。
渐进式 rehash:
大字典的扩容是比较耗时间的,需要重新申请新的数组,然后将旧字典所有链表中的元素重新挂接到新的数组下面,这是一个 O(n) 级别的操作,作为单线程的 Redis 很难承受这样耗时的过程,所以 Redis 使用 渐进式 rehash 小步搬迁:
渐进式 rehash 会在 rehash 的同时,保留新旧两个 hash 结构,如上图所示,查询时会同时查询两个 hash 结构,然后在后续的定时任务以及 hash 操作指令中,循序渐进的把旧字典的内容迁移到新字典中。当搬迁完成了,就会使用新的 hash 结构取而代之。
扩缩容的条件:
正常情况下,当 hash 表中 元素的个数等于第一维数组的长度时,就会开始扩容,扩容的新数组是 原数组大小的 2 倍。不过如果 Redis 正在做 bgsave(持久化命令),为了减少内存也得过多分离,Redis 尽量不去扩容,但是如果 hash 表非常满了,达到了第一维数组长度的 5 倍了,这个时候就会 强制扩容。
当 hash 表因为元素逐渐被删除变得越来越稀疏时,Redis 会对 hash 表进行缩容来减少 hash 表的第一维数组空间占用。所用的条件是 元素个数低于数组长度的 10%,缩容不会考虑 Redis 是否在做 bgsave。
字典的基本操作:
hash 也有缺点,hash 结构的存储消耗要高于单个字符串,所以到底该使用 hash 还是字符串,需要根据实际情况再三权衡:
> HSET books java "think in java" # 命令行的字符串如果包含空格则需要使用引号包裹
(integer) 1
> HSET books python "python cookbook"
(integer) 1
> HGETALL books # key 和 value 间隔出现
1) "java"
2) "think in java"
3) "python"
4) "python cookbook"
> HGET books java
"think in java"
> HSET books java "head first java"
(integer) 0 # 因为是更新操作,所以返回 0
> HMSET books java "effetive java" python "learning python" # 批量操作
OK
Redis 的集合相当于 Java 语言中的 HashSet,它内部的键值对是无序、唯一的。它的内部实现相当于一个特殊的字典,字典中所有的 value 都是一个值 NULL。
集合 set 的基本使用:
由于该结构比较简单,我们直接来看看是如何使用的:
> SADD books java
(integer) 1
> SADD books java # 重复
(integer) 0
> SADD books python golang
(integer) 2
> SMEMBERS books # 注意顺序,set 是无序的
1) "java"
2) "python"
3) "golang"
> SISMEMBER books java # 查询某个 value 是否存在,相当于 contains
(integer) 1
> SCARD books # 获取长度
(integer) 3
> SPOP books # 弹出一个
"java"
这可能使 Redis 最具特色的一个数据结构了,它类似于 Java 中 SortedSet 和 HashMap 的结合体,一方面它是一个 set,保证了内部 value 的唯一性,另一方面它可以为每个 value 赋予一个 score 值,用来代表排序的权重。
它的内部实现用的是一种叫做 「跳跃表」 的数据结构,由于比较复杂,所以在这里简单提一下原理就好了:
想象你是一家创业公司的老板,刚开始只有几个人,大家都平起平坐。后来随着公司的发展,人数越来越多,团队沟通成本逐渐增加,渐渐地引入了组长制,对团队进行划分,于是有一些人又是员工又有组长的身份。
再后来,公司规模进一步扩大,公司需要再进入一个层级:部门。于是每个部门又会从组长中推举一位选出部长。
跳跃表就类似于这样的机制,最下面一层所有的元素都会串起来,都是员工,然后每隔几个元素就会挑选出一个代表,再把这几个代表使用另外一级指针串起来。然后再在这些代表里面挑出二级代表,再串起来。最终形成了一个金字塔的结构。
想一下你目前所在的地理位置:亚洲 > 中国 > 某省 > 某市 > …,就是这样一个结构!
有序列表 zset 基础操作:
> ZADD books 9.0 "think in java"
> ZADD books 8.9 "java concurrency"
> ZADD books 8.6 "java cookbook"
> ZRANGE books 0 -1 # 按 score 排序列出,参数区间为排名范围
1) "java cookbook"
2) "java concurrency"
3) "think in java"
> ZREVRANGE books 0 -1 # 按 score 逆序列出,参数区间为排名范围
1) "think in java"
2) "java concurrency"
3) "java cookbook"
> ZCARD books # 相当于 count()
(integer) 3
> ZSCORE books "java concurrency" # 获取指定 value 的 score
"8.9000000000000004" # 内部 score 使用 double 类型进行存储,所以存在小数点精度问题
> ZRANK books "java concurrency" # 排名
(integer) 1
> ZRANGEBYSCORE books 0 8.91 # 根据分值区间遍历 zset
1) "java cookbook"
2) "java concurrency"
> ZRANGEBYSCORE books -inf 8.91 withscores # 根据分值区间 (-∞, 8.91] 遍历 zset,同时返回分值。inf 代表 infinite,无穷大的意思。
1) "java cookbook"
2) "8.5999999999999996"
3) "java concurrency"
4) "8.9000000000000004"
> ZREM books "java concurrency" # 删除 value
(integer) 1
> ZRANGE books 0 -1
1) "java cookbook"
2) "think in java"
七、Redis适合的场景:
最常用的一种使用redis的情景是会话缓存。用redis缓存会话比其他的存储(如mamcached)的优势在于:redis提供持久化。当维持一个不是严格要求一致性的缓存时,若用户的购物车信息全部丢失,大部分人都会不高兴的,现在,幸运的是,随着redis这些年的改进,很容易找到怎么恰当的使用redis来缓存会话的文档。
除基本的会话token之外,redis还提供了很简单的FPC平台。回到一致性问题,即使重启了redis实例,因为磁盘的持久化,用户也不会看到页面加载速度的下降,这是一个很大的改进。
redis在内存存储引擎领域的一大优点是:提供了list和set操作,这使得redis能作为一个很好的消息队列平台来使用。
redis在内存中对数字进行递增/减的操作实现的非常好。集合(Set)和有序集合(zset)也使得我们在执行这些操作的时候变的非常简单。
发布/订阅的场景用到的时候也非常多。
感谢并参考至:java知音