网络互连的目的是进行网络通信,也即是网络数据传输,更具体一点,是网络主机中的不同进程间,基于网络传输数据。而进行网络通信又涉及很多知识点,本文将对各种概念做简单介绍并进行梳理,旨在讲清楚网络通信的原理和过程,
IP地址主要用于标识网络主机、其他网络设备(如路由器)的网络地址。简单说,IP地址用于定位主机的网络地址。
IP地址(Internet Protocol Address)是指互联网协议地址,又译为网际协议地址。
就像我们发送快递一样,需要知道对方的收货地址,快递员才能将包裹送到目的地。
IP地址是一个32位的二进制数,通常被分割为4个“8位二进制数”(也就是4个字节),如:01100100.00000100.00000101.00000110。通常用“点分十进制”来表示,即 a.b.c.d 的形式(a,b,c,d都是0~255之间的十进制数)。如前面的ip表示为:100.4.5.6。
IPv4和IPv6:
IP协议有两个版本,IPv4和IPv6。我们整个的课程,凡是提到IP协议,没有特殊说明的,默认都是指IPv4。
IPv4数量=2^32,大约43亿左右,而TCP/IP协议规定,每个主机都需要有一个IP地址。对于全世界计算机来说,这个数量是不够的,所以后来推出了IPv6(长度128位,是IPv4的4倍)。
但因为目前IPv4还广泛的使用,且可以使用其他技术(NAT、NAPT)来解决IP地址不足的问题,所以IPv6也就没有普及。
组成:
那么如何划分网络号和主机号呢?过去曾经提出一种划分网络号和主机号的方案,把所有IP 地址分为五类,如下图所示。
各类地址的表示范围:
备注:主机最大连接数减去2,是扣除主机号为全0和全1的特殊IP地址
特殊IP:
- 将IP地址中的主机地址全部设为0,就成为了网络号,代表这个局域网;
- 将IP地址中的主机地址全部设为1,就成为了广播地址,用于给同一个链路中相互连接的所有主机发送数据包;
- 127.*的IP地址用于本机环回(loop back)测试,通常是127.0.0.1
- 本机环回主要用于本机到本机的网络通信(系统内部为了性能,不会走网络的方式传输),对于开发网络通信的程序(即网络编程)而言,常见的开发方式都是本机到本机的网络通信。
在上述的分类中,存在IP地址浪费的问题:
(1)单位一般会申请B类网络(C类连接主机数量有限),但实际网络架设时,连接的主机数量又常远小于65534(B类连接主机数),造成IP地址浪费;同理,A类网络的IP地址也会造成大量的浪费。
(2)当一个单位申请了一个网络号。他想将该网络能表示的IP地址再分给它下属的几个小单位时,如果在申请新的网络就会造成浪费。
为了解决以上问题,引入子网掩码来进行子网划分:
格式:
子网掩码格式和IP地址一样,也是一个32位的二进制数。其中左边是网络位,用二进制数字“1”表示,1的数目等于网络位的长度;右边是主机位,用二进制数字“0”表示,0的数目等于主机位的长度。
子网掩码也可以使用二进制所有高位1相加的数值来表示,如子网掩码255.255.255.0,也可以表示为24。
作用:
1)划分A,B,C三类 IP 地址子网:
如一个B类IP地址:191.100.0.0,按A ~ E类分类来说,网络号二进制数为16位网络号+16位主机号。
假设使用子网掩码 255.255.128.0(即17) 来划分子网,意味着划分子网后,高17位都是网络位/网络号,也就是将原来16位主机号,划分为1位子网号+15位主机号。
此时,IP地址组成为:网络号+子网号+主机号,网络号和子网号统一为网络标识(划分子网后的网络号/网段)
(2)网络通信时,子网掩码结合IP地址,可以计算获得网络号(划分子网后的网络号)及主机号(划分子网后的主机号)。一般用于判断目的IP与本IP是否为同一个网段。
计算方式:
将 IP 地址和子网掩码进行“按位与”操作(二进制相同位,与操作,两个都是1结果为1,否则为0),得到的结果就是网络号。
将子网掩码二进制按位取反,再与 IP 地址位与计算,得到的就是主机号。
IP地址解决了网络通信时,定位网络主机的问题,但是还存在一个问题,传输到目的主机后,由哪个进程来接收这个数据呢?这就需要端口号来标识。
在网络通信中,IP地址用于标识主机网络地址,端口号可以标识主机中发送数据、接收数据的进程。简单说:端口号用于定位主机中的进程。
类似发送快递时,不光需要指定收货地址(IP地址),还需要指定收货人(端口号)。
格式:
端口号是0~65535范围的数字,在网络通信中,进程可以通过绑定一个端口号,来发送及接收网络数据。
注意:两个不同的进程,不能绑定同一个端口号,但一个进程可以绑定多个端口号。
有了IP地址和端口号,可以定位到网络中唯一的一个进程,但还存在一个问题,网络通信是基于二进制0/1数据来传输,如何告诉对方发送的数据是什么样的呢?
网络通信传输的数据类型可能有多种:图片,视频,文本等。同一个类型的数据,格式可能也不同,如发送一个文本字符串“你好!”:如何标识发送的数据是文本类型,及文本的编码格式呢?
基于网络数据传输,需要使用协议来规定双方的数据格式。
概念:
协议,网络协议的简称,网络协议是网络通信(即网络数据传输)经过的所有网络设备都必须共同遵从的一组约定、规则。如怎么样建立连接、怎么样互相识别等。只有遵守这个约定,计算机之间才能相互通信交流。通常由三要素组成:
- 语法:即数据与控制信息的结构或格式;
类似打电话时,双方要使用同样的语言:普通话- 语义:即需要发出何种控制信息,完成何种动作以及做出何种响应;
语义主要用来说明通信双方应当怎么做。用于协调与差错处理的控制信息。
类似打电话时,说话的内容。一方道:你瞅啥?另一方就得有对应的响应:瞅你咋的!- 时序,即事件实现顺序的详细说明。
时序定义了何时进行通信,先讲什么,后讲什么,讲话的速度等。比如是采用同步传输还是异步传输。
女生和男生的通话,总是由男生主动发起通话,而总是在男生恋恋不舍的时候,由女生要求结束通话。
协议最终体现为在网络上传输的数据包格式。
知名协议的默认端口:
系统端口号范围为 0 ~ 65535,其中:0 ~ 1023 为知名端口号,这些端口预留给服务端程序绑定广泛使用的应用层协议,如:
- 22端口:预留给SSH服务器绑定SSH协议
- 21端口:预留给FTP服务器绑定FTP协议
- 23端口:预留给Telnet服务器绑定Telnet协议
- 80端口:预留给HTTP服务器绑定HTTP协议
- 443端口:预留给HTTPS服务器绑定HTTPS协议
在TCP/IP协议中,用五元组来标识一个网络通信:
以寄信为例:
源(目的)IP相当于寄(收)件人的地址,源(目的)端口号相当于寄(收)件人的姓名电话,协议号相当于使用什么快递公司(韵达/顺丰/中通…)。
为什么要分层?
网路通信是一个非常复杂,而且里面有巨多细节的过程。如果我们只通过一个协议,来完成网络通信,那么这个协议会非常的复杂且庞大。
因此有一个好办法就是将协议分层,将这个庞大复杂的协议,拆分成多个小协议,每个协议分工明确,只负责自己的部分。就好像写代码一样,我们往往把一个复杂的模块,拆分成多个模块,每个模块只负责自己需要实现的功能。
协议分层的好处:
1 、每层协议不需要去了解其他层的协议
2、 可以更方便的对对应层的协议进行替换,根据不同的通信对象选择不同的协议
3、分层最大的好处,类似于面向接口编程:定义好两层间的接口规范,让双方遵循这个规范来对接。对于使用方来说,并不关心提供方是如何实现的,只需要使用接口即可
对于提供方来说,利用封装的特性,隐藏了实现的细节,只需要开放接口即可。
OSI:即Open System Interconnection,开放系统互连
但是!OSI七层模型太复杂了,因此只存在于教科书中,实际落地只是以OSI设计中的部分分层,也就是TCP/IP五层(或四层)模型来实现的。
其实在具体的开发工作中,程序员打交道最多的就是应用层,因为其他四层大部分都是操作系统硬件已经实现了,我们可以直接调用操作系统的api进行通信就行。
TCP/IP是一组协议的代名词,它还包括许多协议,组成了TCP/IP协议簇。
TCP/IP通讯协议采用了5层的层级结构,每一层都呼叫它的下一层所提供的网络来完成自己的需求。
物理层我们考虑的比较少。因此很多时候也可以称为 TCP/IP四层模型
注意:
我们这里说的是传统意义上的交换机和路由器,也称为二层交换机(工作在TCP/IP五层模型的下两层)、三层路由器(工作在TCP/IP五层模型的下三层)。随着现在网络设备技术的不断发展,也出现了很多3层或4层交换机,4层路由器。我们以下说的网络设
备都是传统意义上的交换机和路由器。
- 不同的协议层对数据包有不同的称谓,在传输层叫做段(segment),在网络层叫做数据报(datagram),在链路层叫做帧(frame)。
- 应用层数据通过协议栈发到网络上时,每层协议都要加上一个数据首部(header),称为封装(Encapsulation)。
- 首部信息中包含了一些类似于首部有多长,载荷(payload)有多长,上层协议是什么等信息。
- 数据封装成帧后发到传输介质上,到达目的主机后每层协议再剥掉相应的首部,根据首部中的 “上层协议字段” 将数据交给对应的上层协议处理,称为分用
举例子:QQ发消息
封装的过程:
分用的过程:
无论网络多么复杂,传输的过程都是类似这样不断的封装和分用。
本文介绍了网络通信的原理以及一些概念性的知识,介绍了什么是IP地址、端口号、协议、TCP/IP五层模型以及网络通信时数据的具体传输过程。这些都是网络通信的基础,后续将会针对各层的重点协议进行详细介绍。