打卡第56天。
● 583.两个字符串的删除操作
● 72.编辑距离
● 编辑距离总结篇
给定两个单词 word1
和 word2
,返回使得 word1
和 word2
相同所需的最小步数。
每步 可以删除任意一个字符串中的一个字符。
示例 1:
输入: word1 = "sea", word2 = "eat"
输出: 2
解释: 第一步将 "sea" 变为 "ea" ,第二步将 "eat "变为 "ea"
示例 2:
输入:word1 = "leetcode", word2 = "etco"
输出:4
提示:
1 <= word1.length, word2.length <= 500
word1
和 word2
只包含小写英文字母其实就是求两个字符串最长的公共子序列
class Solution {
public:
int minDistance(string word1, string word2) {
// 求最长公共子序列
int n = word1.size(), m = word2.size();
vector<vector<int>> dp(n + 1, vector<int>(m + 1, 0)); //dp[i][j] 长度为[0, i-1]的word1,和长度为[0, j-1]的word2 的最长公共子序列
for(int i = 1; i <= n; i++) {
for(int j = 1; j <= m; j++) {
if(word1[i - 1] == word2[j - 1]) dp[i][j] = dp[i - 1][j - 1] + 1;
else dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
}
}
return n + m - 2 * dp[n][m];
}
};
class Solution {
public:
int minDistance(string word1, string word2) {
int n = word1.size(), m = word2.size();
vector<vector<int>> dp(n + 1, vector<int>(m + 1, 0)); //dp[i][j] 长度为[0, i-1]的word1,和长度为[0, j-1]的word2 要删除的字符数
for(int i = 0; i <= n; i++) dp[i][0] = i; // 初始化
for(int j = 0; j <= m; j++) dp[0][j] = j; // 初始化
for(int i = 1; i <= n; i++) {
for(int j = 1; j <= m; j++) {
if(word1[i - 1] == word2[j - 1]) dp[i][j] = dp[i - 1][j - 1];
else dp[i][j] = min(min(dp[i - 1][j] + 1, dp[i][j - 1] + 1), dp[i - 1][j - 1] + 2);
}
}
return dp[n][m];
}
};
给你两个单词 word1
和 word2
, 请返回将 word1
转换成 word2
所使用的最少操作数 。
你可以对一个单词进行如下三种操作:
示例 1:
输入:word1 = "horse", word2 = "ros"
输出:3
解释:
horse -> rorse (将 'h' 替换为 'r')
rorse -> rose (删除 'r')
rose -> ros (删除 'e')
示例 2:
输入:word1 = "intention", word2 = "execution"
输出:5
解释:
intention -> inention (删除 't')
inention -> enention (将 'i' 替换为 'e')
enention -> exention (将 'n' 替换为 'x')
exention -> exection (将 'n' 替换为 'c')
exection -> execution (插入 'u')
提示:
0 <= word1.length, word2.length <= 500
word1
和 word2
由小写英文字母组成重点理解:if (word1[i - 1] != word2[j - 1]),此时就需要编辑了,如何编辑呢?
class Solution {
public:
int minDistance(string word1, string word2) {
vector<vector<int>> dp(word1.size() + 1, vector<int>(word2.size() + 1, 0));
for (int i = 0; i <= word1.size(); i++) dp[i][0] = i;
for (int j = 0; j <= word2.size(); j++) dp[0][j] = j;
for (int i = 1; i <= word1.size(); i++) {
for (int j = 1; j <= word2.size(); j++) {
if (word1[i - 1] == word2[j - 1]) {
dp[i][j] = dp[i - 1][j - 1];
}
else {
dp[i][j] = min({dp[i - 1][j - 1], dp[i - 1][j], dp[i][j - 1]}) + 1;
}
}
}
return dp[word1.size()][word2.size()];
}
};