- SenseVoice 实测,阿里开源语音大模型,识别效果和效率优于 Whisper,居然还能检测掌声、笑声!5分钟带你部署体验
AI码上来
AI实战开源whisperxcode
前段时间,带着大家捏了一个对话机器人:手把手带你搭建一个语音对话机器人,5分钟定制个人AI小助手(新手入门篇)其中语音识别(ASR)方案,采用的是阿里开源的FunASR,这刚不久,阿里又开源了一个更强的音频基础模型,该模型具有如下能力:语音识别(ASR)语种识别(LID)语音情感识别(SER)声学事件分类(AEC)声学事件检测(AED)传送门:https://github.com/FunAudio
- 深度学习torch之19种优化算法(optimizer)解析
@Mr_LiuYang
论文阅读深度学习optimizerAdam学习率调整优化算法
提示:有谬误请指正摘要本博客详细介绍了多种常见的深度学习优化算法,包括经典的LBFGS、Rprop、Adagrad、RMSprop、Adadelta、ASGD、Adamax、Adam、AdamW、NAdam、RAdam以及SparseAdam等,通过对这些算法的公式和参数说明进行详细解析,博客旨在为机器学习工程师和研究人员提供清晰的理论指导,帮助读者选择合适的优化算法提升模型训练效率。父类定义Op
- python实现将RGB相机与事件相机的照片信息进行融合以进行目标检测
go5463158465
python算法python数码相机目标检测
要将RGB相机与事件相机的照片信息进行融合以进行目标检测,我们可以按以下步骤进行:整体思路数据读取:分别读取RGB图像和事件相机数据。数据预处理:对RGB图像和事件数据进行必要的预处理,如调整尺寸、归一化等。数据融合:将预处理后的RGB图像和事件数据进行融合。目标检测:使用融合后的数据进行目标检测。代码实现importcv2importnumpyasnpimporttorchfromtorchvi
- 探索TotalSegmentator:一款强大的全场景图像分割工具
计蕴斯Lowell
探索TotalSegmentator:一款强大的全场景图像分割工具项目地址:https://gitcode.com/gh_mirrors/to/TotalSegmentator项目简介是一个开源的、基于深度学习的全场景图像分割框架。它由开发者Wasserth创建,旨在为医学影像分析、自动驾驶、遥感图像处理等多个领域提供高效且准确的像素级分类能力。该项目的亮点在于其模型的通用性和易用性,能够处理多种
- C语言 hanoi双塔问题(移动次数递推)
weixin_51302377
力扣
给定A,B,C三根足够长的细柱,在A柱上放有2n个中间有空的圆盘,共有n个不同的尺寸,每个尺寸都有两个相同的圆盘,注意这两个圆盘是不加区分的(下图为n=3的情形)。现要将这些国盘移到C柱上,在移动过程中可放在B柱上暂存。要求:提交(1)每次只能移动一个圆盘;(2)A、B、C三根细柱上的圆盘都要保持上小下大的顺序;任务:设An为2n个圆盘完成上述任务所需的最少移动次数,对于输入的n,输出An。输入输
- 从零到入门:人工智能学习路径全解析
这题有点难度
人工智能学习
一、打破迷雾:重新认识人工智能人工智能(AI)早已不再是科幻电影中的专属概念,而是渗透到我们生活的方方面面。从手机里的语音助手到电商平台的推荐系统,从自动驾驶到医疗影像分析,AI技术正在重塑人类社会的运行方式。对于初学者而言,建立正确的认知框架至关重要:1.技术图谱解析:机器学习(ML):AI的核心驱动力,使计算机具备从数据中学习的能力深度学习(DL):基于神经网络的进阶技术,擅长处理图像、语音等
- 最少前缀操作问题--感受不到动态规划,怎么办怎么办
幼儿园口算大王
算法java动态规划
题目:标签:动态规划(应该是双指针的,不理解)小U和小R有两个字符串,分别是S和T,现在小U需要通过对S进行若干次操作,使其变成T的一个前缀。操作可以是修改S的某一个字符,或者删除S末尾的字符。现在你需要帮助小U计算出,最少需要多少次操作才能让S变成T的前缀。测试样例样例1:输入:S="aba",T="abb"输出:1样例2:输入:S="abcd",T="efg"输出:4样例3:输入:S="xyz
- 【TVM教程】为 x86 CPU 自动调优卷积网络
ApacheTVM是一个深度的深度学习编译框架,适用于CPU、GPU和各种机器学习加速芯片。更多TVM中文文档可访问→https://tvm.hyper.ai/作者:YaoWang,EddieYan本文介绍如何为x86CPU调优卷积神经网络。注意,本教程不会在Windows或最新版本的macOS上运行。如需运行,请将本教程的主体放在if__name__=="__main__":代码块中。impor
- AI技术在音乐产品中有哪些应用场景?
大数据人工智能音乐大数据
自动标注、平滑过渡、音乐鉴权、AI创作,当AI技术应用于音乐行业为人类的精神文化与娱乐生活带来便利和更多选择时,也是一件让人激动不已的事情。随着深度学习算法的出现、大数据和5G技术的成熟,AI人工智能已逐渐融入我们的生产生活中,在教育、医疗、政务办公、城市管理等多个方面发挥作用。随着AI技术在音乐行业研究及应用的深入,音乐人工智能已经不新鲜,很多新的应用和产品已经惊艳亮相。基于对于音乐技术及产品的
- 程序员如何避免出纰漏?
程序员
这两天我们开发团队不知道咋的,跟包饺子下锅似的接连出了不少纰漏,有的大有的小,其实开发能力都可以,不是那种能力差导致的问题,我从外部观察,总结了一些出纰漏的原因和解决方案。先说一下有啥纰漏。小程序代码分包的时候,影响到线上正在使用的业务,损失了大概1晚上的流量。上了身份证、人脸认证功能,测试回归的时候,测了不需要实名和人脸的场景,没测只需要身份证的场景,结果线上跑的时候用这个场景,导致功能也出了问
- redux中间件-redux-thunk
#清词#
笔记中间件javascript开发语言
今天,让我们一起揭开redux中间件-redux-thunk的神秘面纱。本次小文章将会以任务驱动的形式去逐步讲解thunk及其在redux中的使用,这样易于理解,有理有据能够化抽象为具体。首先,为什么要使用redux中间件?什么是中间件?中间件有什么作用呢?redux是一个通用的JavaScript状态管理容器。对于state的变化是通过触发dispatch一个action,然后最交给reduce
- 【深度学习入门:基于python的理论与实现读书笔记】第五章误差反向传播法
Bin二叉
深度学习python人工智能
目录摘要第五章误差反向传播法简单层的实现乘法层的实现加法层的实现激活函数层的实现ReLU层Sigmoid层Affine层和Softmax层的实现Affine层Softmax-with-Loss层误差反向传播法的实现摘要该文章简要介绍了神经网络的误差反向传播法,省去了大量的推理过程,重点讲述了神经网络误差反向传播法的代码实现。第五章误差反向传播法反向传播就是从后到前局部计算偏导数并将其与从上游传来的
- PyTorch与TensorFlow的对比:哪个框架更适合你的项目?
木觞清
pytorchtensorflow人工智能
在机器学习和深度学习领域,PyTorch和TensorFlow是最流行的两个框架。它们各有特点,适用于不同的开发需求和场景。本文将详细对比这两个框架,帮助你根据项目需求选择最合适的工具。一、概述PyTorch和TensorFlow都是深度学习框架,它们为构建、训练和部署神经网络提供了强大的工具。尽管它们的最终目标相同,但其设计哲学和实现方式有所不同。PyTorch:由Facebook的人工智能研究
- 【AI中数学-信号处理】信号的清道夫:精通信号过滤技巧
云博士的AI课堂
AI中的数学人工智能信号处理高频去噪带通滤波滤波处理信号过滤机器学习
第3节信号的清道夫:精通信号过滤技巧在信号处理中,过滤技术是一项至关重要的工具。通过对信号的处理与过滤,我们能够去除不必要的成分,如噪声、干扰等,从而提高信号质量,增强其后续处理效果。在本节中,我们将介绍三种实际应用中常用的精通信号过滤技巧,包括基于小波变换的信号分离、带通滤波在心电图分析中的应用,以及图像中的高频噪声去除技术。通过这些案例,我们将深入探讨信号过滤在不同领域中的应用。案例1:基于小
- OpenCV的卡尔曼滤波器:实现和应用
雪域Code
opencv人工智能计算机视觉C/C++
OpenCV的卡尔曼滤波器:实现和应用卡尔曼滤波器(Kalmanfilter)是一种最优估计的算法,在众多领域有着广泛的应用,如控制系统、通信系统、机器人等。OpenCV作为一个计算机视觉库,也提供了对卡尔曼滤波器的支持。本文将介绍OpenCV中卡尔曼滤波器的基本原理、实现方法以及在图像处理中的应用。一、卡尔曼滤波器简介卡尔曼滤波器是一种用于状态估计和信号滤波的算法,主要针对线性、高斯分布的系统。
- vue3和vue2的组件开发有什么区别
IT木昜
vue.js
Vue3和Vue2在组件开发上存在不少差异,下面从多个方面详细介绍:响应式原理Vue2:用Object.defineProperty()方法来实现响应式。打个比方,它就像给对象的每个属性都安排了一个“小管家”,属性被访问或修改时,“小管家”就去通知相关的地方更新。但这个方法有个局限,比如它不能很好地检测对象新增属性或删除属性的变化,你要是给对象新添加一个属性,“小管家”可能注意不到,页面也就不会自
- 详解多模态(红外-可见光图像)目标检测模型SuperYOLO源码,真正搞清代码逻辑!
弗兰随风小欢
目标检测实验系列深度学习目标检测YOLO计算机视觉多模态目标检测视觉检测人工智能
目录1.文章主要内容2.相关说明3.基于SuperYOLO的多模态目标检测3.1详解代码流程(重点)3.1.1train.py文件(入口)3.1.2SRyolo.py文件3.1.3datasets.py文件3.1.4再次回到train.py文件3.1.5再次回到SRyolo.py文件3.总结1.文章主要内容本文主要是详细分析SuperYOLO多模态源代码,包括如何启动,以及详细代码部分如何改进,从
- 生成式AI如何重塑计算机视觉:自监督学习与稀疏计算的革命
ProgramHan
人工智能计算机视觉学习
生成式AI如何重塑计算机视觉:自监督学习与稀疏计算的革命引言:从“数据饥渴”到“智能涌现”传统计算机视觉高度依赖海量标注数据,但现实场景中标注成本高昂且覆盖范围有限。例如,医疗影像标注需专业医生耗时数月,工业缺陷检测需针对特定产线定制数据集。生成式AI(如Diffusion模型、自监督学习)的崛起,正在打破这一瓶颈——通过更高效的训练范式与计算架构,让机器学会“从无标注数据中看见世界”。(示意图:
- Java每日精进·45天挑战·Day19
云朵大王
javaios开发语言
第一部分:移除数字以形成最小数的贪心算法实现在编程的世界里,我们经常遇到需要对字符串表示的数字进行操作的问题。今天,我们要深入探讨一个具体的挑战:给定一个以字符串形式表示的非负整数num和一个整数k,我们的任务是移除k位数字,以使得剩下的数字尽可能小。最终,我们需要返回这个最小的数字(仍然以字符串形式)。问题背景这个问题看似简单,实则充满了挑战。我们需要仔细思考如何高效地移除数字,以确保剩下的数字
- 【深度学习】计算机视觉(CV)-目标检测-DETR(DEtection TRansformer)—— 基于 Transformer 的端到端目标检测
IT古董
深度学习人工智能深度学习计算机视觉目标检测
1.什么是DETR?DETR(DEtectionTRansformer)是FacebookAI(FAIR)于2020年提出的端到端目标检测算法,它基于Transformer架构,消除了FasterR-CNN、YOLO等方法中的候选框(AnchorBoxes)和非极大值抑制(NMS)机制,使目标检测变得更简单、高效。论文:End-to-EndObjectDetectionwithTransforme
- HarmonyOS Next模型量化技术详解
harmonyos
本文旨在深入探讨华为鸿蒙HarmonyOSNext系统(截止目前API12)中模型量化相关技术细节,基于实际开发实践进行总结。主要作为技术分享与交流载体,难免错漏,欢迎各位同仁提出宝贵意见和问题,以便共同进步。本文为原创内容,任何形式的转载必须注明出处及原作者。一、模型量化基础概念与意义(一)概念解释在HarmonyOSNext的模型世界里,模型量化就像是把大尺寸的物品(高精度数据)换成小尺寸的等
- 【软考】子系统划分
王佑辉
软考软考
目录1.子系统划分的原则1.1子系统要具有相对独立性1.2子系统之间数据的依赖性尽量小1.3子系统划分的结果应使数据几余较小1.4子系统的设置应考虑今后管理发展的需要1.5子系统的划分应便于系统分阶段实现1.6子系统的划分应考虑到各类资源的充分利用2.子系统结构设计3.例题3.1例题11.子系统划分的原则1.1子系统要具有相对独立性1.子系统的划分,必须使得子系统的内部功能、信息等各方面的凝聚性较
- 遥感影像目标检测:从CNN(Faster-RCNN)到Transformer(DETR)
岁月如歌,青春不败
生态遥感目标检测cnntransformer遥感遥感影像
我国高分辨率对地观测系统重大专项已全面启动,高空间、高光谱、高时间分辨率和宽地面覆盖于一体的全球天空地一体化立体对地观测网逐步形成,将成为保障国家安全的基础性和战略性资源。未来10年全球每天获取的观测数据将超过10PB,遥感大数据时代已然来临。一:深度卷积网络知识1.深度学习在遥感图像识别中的范式和问题2.深度学习的历史发展历程3.机器学习,深度学习等任务的基本处理流程4.卷积神经网络的基本原理5
- C++效率掌握之STL库:vector底层剖析
DARLING Zero two♡
C++初阶c++开发语言stlvector
文章目录1.学习vector底层的必要性2.vector类对象基本函数实现3.vector类对象的遍历4.vector类对象的扩容追加5.string类对象的插入、删除6.vector类对象的其余操作7.使用memcpy拷贝问题希望读者们多多三连支持小编会继续更新你们的鼓励就是我前进的动力!了解完vector函数的主要用法,很有必要对vector进行深层次的剖析,进一步了解其运作原理,深化理解的同
- 机器学习:支持向量机
小源学AI
人工智能支持向量机机器学习算法
基本概念1.什么是支持向量机支持向量机是一种二分类模型,在机器学习、计算机视觉、数据挖掘中广泛应用,主要用于解决数据分类问题,它的目的是寻找一个超平面对样本进行分割,分割的原则是间隔最大化(也就是数据集的边缘点到分界点的距离d最大)最终转化成一个凸二次规划问题来求解。通常的SVM用于二元分类问题,对于多元分类问题可将其分解为多个二元分类问题,在进行分类。2.最优分类边界什么才是最优分类边界?什么条
- 快速在Ubuntu18.04系统中离线部署深度学习环境
高次超静定的人
pythondockerubuntu
快速在Ubuntu18.04系统中离线部署深度学习环境本文部署的环境前提为电脑上新装的Ubuntu18.04并且没有联网,一切所需的软件均通过离线包安装,旨在模拟实际项目部署中的过程,文章中提及的资源文件在文章最底部,不包含镜像,根据自己的需要去拉取镜像即可。一、服务器部署流程1、安装显卡驱动cuda、cudnn#安装gcc和makecd~/dockerDeploy/pool&&sudo./ins
- linux第八章 git连接本地仓库和gitee
ᰔᩚ. 一怀明月ꦿ
linuxgitlinux
博主主页:@ᰔᩚ.一怀明月ꦿ❤️专栏系列:线性代数,C初学者入门训练,题解C,C的使用文章,「初学」C++,linux座右铭:“不要等到什么都没有了,才下定决心去做”大家觉不错的话,就恳求大家点点关注,点点小爱心,指点指点目录gitgit的作用git的知识点linux上远程链接gitee第一步:linux中安装git第二步:新建git目录第三步:链接仓库1)在gitee中找到仓库的HTTPS2)
- 本地部署Deepseek:从零开始,打造你的私人AI助手!
软件求生
#工作建议架构微服务云原生java开发语言
大家好,我是小米,一个31岁、热爱技术的“技术宅”。今天我要和大家分享一个超级酷炫的技术——本地部署Deepseek!如果你对AI感兴趣,或者想拥有一个属于自己的私人AI助手,那这篇文章绝对不容错过!Deepseek是什么?在开始之前,我们先来聊聊Deepseek到底是什么。简单来说,Deepseek是一个基于深度学习的AI模型,它可以帮助你完成各种任务,比如自然语言处理、图像识别、数据分析等等。
- ZRANGE
那些年的代码
redis
ZRANGEkeystartstop[WITHSCORES]返回有序集key中,指定区间内的成员。其中成员的位置按score值递增(从小到大)来排序。具有相同score值的成员按字典序(lexicographicalorder)来排列。如果你需要成员按score值递减(从大到小)来排列,请使用ZREVRANGE命令。下标参数start和stop都以0为底,也就是说,以0表示有序集第一个成员,以1表
- Vue.js 组件开发
周盛欢
vue.js
嘿,小伙伴们!今天咱们来聊聊Vue.js组件开发。如果你是零基础,别怕,跟着我一步一步来,保证你能轻松上手。Vue.js是一个很厉害的前端框架,它能帮我们快速开发出酷炫的网页应用。而组件开发,是Vue.js的核心技能之一,学会了它,你就能像搭积木一样,拼凑出复杂的页面啦!第一步:了解什么是Vue.js组件在Vue.js里,组件就像是一个个小零件。你可以把它们想象成乐高积木,每个积木都有自己的功能和
- 桌面上有多个球在同时运动,怎么实现球之间不交叉,即碰撞?
换个号韩国红果果
html小球碰撞
稍微想了一下,然后解决了很多bug,最后终于把它实现了。其实原理很简单。在每改变一个小球的x y坐标后,遍历整个在dom树中的其他小球,看一下它们与当前小球的距离是否小于球半径的两倍?若小于说明下一次绘制该小球(设为a)前要把他的方向变为原来相反方向(与a要碰撞的小球设为b),即假如当前小球的距离小于球半径的两倍的话,马上改变当前小球方向。那么下一次绘制也是先绘制b,再绘制a,由于a的方向已经改变
- 《高性能HTML5》读后整理的Web性能优化内容
白糖_
html5
读后感
先说说《高性能HTML5》这本书的读后感吧,个人觉得这本书前两章跟书的标题完全搭不上关系,或者说只能算是讲解了“高性能”这三个字,HTML5完全不见踪影。个人觉得作者应该首先把HTML5的大菜拿出来讲一讲,再去分析性能优化的内容,这样才会有吸引力。因为只是在线试读,没有机会看后面的内容,所以不胡乱评价了。
- [JShop]Spring MVC的RequestContextHolder使用误区
dinguangx
jeeshop商城系统jshop电商系统
在spring mvc中,为了随时都能取到当前请求的request对象,可以通过RequestContextHolder的静态方法getRequestAttributes()获取Request相关的变量,如request, response等。 在jshop中,对RequestContextHolder的
- 算法之时间复杂度
周凡杨
java算法时间复杂度效率
在
计算机科学 中,
算法 的时间复杂度是一个
函数 ,它定量描述了该算法的运行时间。这是一个关于代表算法输入值的
字符串 的长度的函数。时间复杂度常用
大O符号 表述,不包括这个函数的低阶项和首项系数。使用这种方式时,时间复杂度可被称为是
渐近 的,它考察当输入值大小趋近无穷时的情况。
这样用大写O()来体现算法时间复杂度的记法,
- Java事务处理
g21121
java
一、什么是Java事务 通常的观念认为,事务仅与数据库相关。 事务必须服从ISO/IEC所制定的ACID原则。ACID是原子性(atomicity)、一致性(consistency)、隔离性(isolation)和持久性(durability)的缩写。事务的原子性表示事务执行过程中的任何失败都将导致事务所做的任何修改失效。一致性表示当事务执行失败时,所有被该事务影响的数据都应该恢复到事务执行前的状
- Linux awk命令详解
510888780
linux
一. AWK 说明
awk是一种编程语言,用于在linux/unix下对文本和数据进行处理。数据可以来自标准输入、一个或多个文件,或其它命令的输出。它支持用户自定义函数和动态正则表达式等先进功能,是linux/unix下的一个强大编程工具。它在命令行中使用,但更多是作为脚本来使用。
awk的处理文本和数据的方式:它逐行扫描文件,从第一行到
- android permission
布衣凌宇
Permission
<uses-permission android:name="android.permission.ACCESS_CHECKIN_PROPERTIES" ></uses-permission>允许读写访问"properties"表在checkin数据库中,改值可以修改上传
<uses-permission android:na
- Oracle和谷歌Java Android官司将推迟
aijuans
javaoracle
北京时间 10 月 7 日,据国外媒体报道,Oracle 和谷歌之间一场等待已久的官司可能会推迟至 10 月 17 日以后进行,这场官司的内容是 Android 操作系统所谓的 Java 专利权之争。本案法官 William Alsup 称根据专利权专家 Florian Mueller 的预测,谷歌 Oracle 案很可能会被推迟。 该案中的第二波辩护被安排在 10 月 17 日出庭,从目前看来
- linux shell 常用命令
antlove
linuxshellcommand
grep [options] [regex] [files]
/var/root # grep -n "o" *
hello.c:1:/* This C source can be compiled with:
- Java解析XML配置数据库连接(DOM技术连接 SAX技术连接)
百合不是茶
sax技术Java解析xml文档dom技术XML配置数据库连接
XML配置数据库文件的连接其实是个很简单的问题,为什么到现在才写出来主要是昨天在网上看了别人写的,然后一直陷入其中,最后发现不能自拔 所以今天决定自己完成 ,,,,现将代码与思路贴出来供大家一起学习
XML配置数据库的连接主要技术点的博客;
JDBC编程 : JDBC连接数据库
DOM解析XML: DOM解析XML文件
SA
- underscore.js 学习(二)
bijian1013
JavaScriptunderscore
Array Functions 所有数组函数对参数对象一样适用。1.first _.first(array, [n]) 别名: head, take 返回array的第一个元素,设置了参数n,就
- plSql介绍
bijian1013
oracle数据库plsql
/*
* PL/SQL 程序设计学习笔记
* 学习plSql介绍.pdf
* 时间:2010-10-05
*/
--创建DEPT表
create table DEPT
(
DEPTNO NUMBER(10),
DNAME NVARCHAR2(255),
LOC NVARCHAR2(255)
)
delete dept;
select
- 【Nginx一】Nginx安装与总体介绍
bit1129
nginx
启动、停止、重新加载Nginx
nginx 启动Nginx服务器,不需要任何参数u
nginx -s stop 快速(强制)关系Nginx服务器
nginx -s quit 优雅的关闭Nginx服务器
nginx -s reload 重新加载Nginx服务器的配置文件
nginx -s reopen 重新打开Nginx日志文件
- spring mvc开发中浏览器兼容的奇怪问题
bitray
jqueryAjaxspringMVC浏览器上传文件
最近个人开发一个小的OA项目,属于复习阶段.使用的技术主要是spring mvc作为前端框架,mybatis作为数据库持久化技术.前台使用jquery和一些jquery的插件.
在开发到中间阶段时候发现自己好像忽略了一个小问题,整个项目一直在firefox下测试,没有在IE下测试,不确定是否会出现兼容问题.由于jquer
- Lua的io库函数列表
ronin47
lua io
1、io表调用方式:使用io表,io.open将返回指定文件的描述,并且所有的操作将围绕这个文件描述
io表同样提供三种预定义的文件描述io.stdin,io.stdout,io.stderr
2、文件句柄直接调用方式,即使用file:XXX()函数方式进行操作,其中file为io.open()返回的文件句柄
多数I/O函数调用失败时返回nil加错误信息,有些函数成功时返回nil
- java-26-左旋转字符串
bylijinnan
java
public class LeftRotateString {
/**
* Q 26 左旋转字符串
* 题目:定义字符串的左旋转操作:把字符串前面的若干个字符移动到字符串的尾部。
* 如把字符串abcdef左旋转2位得到字符串cdefab。
* 请实现字符串左旋转的函数。要求时间对长度为n的字符串操作的复杂度为O(n),辅助内存为O(1)。
*/
pu
- 《vi中的替换艺术》-linux命令五分钟系列之十一
cfyme
linux命令
vi方面的内容不知道分类到哪里好,就放到《Linux命令五分钟系列》里吧!
今天编程,关于栈的一个小例子,其间我需要把”S.”替换为”S->”(替换不包括双引号)。
其实这个不难,不过我觉得应该总结一下vi里的替换技术了,以备以后查阅。
1
所有替换方案都要在冒号“:”状态下书写。
2
如果想将abc替换为xyz,那么就这样
:s/abc/xyz/
不过要特别
- [轨道与计算]新的并行计算架构
comsci
并行计算
我在进行流程引擎循环反馈试验的过程中,发现一个有趣的事情。。。如果我们在流程图的每个节点中嵌入一个双向循环代码段,而整个流程中又充满着很多并行路由,每个并行路由中又包含着一些并行节点,那么当整个流程图开始循环反馈过程的时候,这个流程图的运行过程是否变成一个并行计算的架构呢?
- 重复执行某段代码
dai_lm
android
用handler就可以了
private Handler handler = new Handler();
private Runnable runnable = new Runnable() {
public void run() {
update();
handler.postDelayed(this, 5000);
}
};
开始计时
h
- Java实现堆栈(list实现)
datageek
数据结构——堆栈
public interface IStack<T> {
//元素出栈,并返回出栈元素
public T pop();
//元素入栈
public void push(T element);
//获取栈顶元素
public T peek();
//判断栈是否为空
public boolean isEmpty
- 四大备份MySql数据库方法及可能遇到的问题
dcj3sjt126com
DBbackup
一:通过备份王等软件进行备份前台进不去?
用备份王等软件进行备份是大多老站长的选择,这种方法方便快捷,只要上传备份软件到空间一步步操作就可以,但是许多刚接触备份王软件的客用户来说还原后会出现一个问题:因为新老空间数据库用户名和密码不统一,网站文件打包过来后因没有修改连接文件,还原数据库是好了,可是前台会提示数据库连接错误,网站从而出现打不开的情况。
解决方法:学会修改网站配置文件,大多是由co
- github做webhooks:[1]钩子触发是否成功测试
dcj3sjt126com
githubgitwebhook
转自: http://jingyan.baidu.com/article/5d6edee228c88899ebdeec47.html
github和svn一样有钩子的功能,而且更加强大。例如我做的是最常见的push操作触发的钩子操作,则每次更新之后的钩子操作记录都会在github的控制板可以看到!
工具/原料
github
方法/步骤
- ">的作用" target="_blank">JSP中的作用
蕃薯耀
JSP中<base href="<%=basePath%>">的作用
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
- linux下SAMBA服务安装与配置
hanqunfeng
linux
局域网使用的文件共享服务。
一.安装包:
rpm -qa | grep samba
samba-3.6.9-151.el6.x86_64
samba-common-3.6.9-151.el6.x86_64
samba-winbind-3.6.9-151.el6.x86_64
samba-client-3.6.9-151.el6.x86_64
samba-winbind-clients
- guava cache
IXHONG
cache
缓存,在我们日常开发中是必不可少的一种解决性能问题的方法。简单的说,cache 就是为了提升系统性能而开辟的一块内存空间。
缓存的主要作用是暂时在内存中保存业务系统的数据处理结果,并且等待下次访问使用。在日常开发的很多场合,由于受限于硬盘IO的性能或者我们自身业务系统的数据处理和获取可能非常费时,当我们发现我们的系统这个数据请求量很大的时候,频繁的IO和频繁的逻辑处理会导致硬盘和CPU资源的
- Query的开始--全局变量,noconflict和兼容各种js的初始化方法
kvhur
JavaScriptjquerycss
这个是整个jQuery代码的开始,里面包含了对不同环境的js进行的处理,例如普通环境,Nodejs,和requiredJs的处理方法。 还有jQuery生成$, jQuery全局变量的代码和noConflict代码详解 完整资源:
http://www.gbtags.com/gb/share/5640.htm jQuery 源码:
(
- 美国人的福利和中国人的储蓄
nannan408
今天看了篇文章,震动很大,说的是美国的福利。
美国医院的无偿入院真的是个好措施。小小的改善,对于社会是大大的信心。小孩,税费等,政府不收反补,真的体现了人文主义。
美国这么高的社会保障会不会使人变懒?答案是否定的。正因为政府解决了后顾之忧,人们才得以倾尽精力去做一些有创造力,更造福社会的事情,这竟成了美国社会思想、人
- N阶行列式计算(JAVA)
qiuwanchi
N阶行列式计算
package gaodai;
import java.util.List;
/**
* N阶行列式计算
* @author 邱万迟
*
*/
public class DeterminantCalculation {
public DeterminantCalculation(List<List<Double>> determina
- C语言算法之打渔晒网问题
qiufeihu
c算法
如果一个渔夫从2011年1月1日开始每三天打一次渔,两天晒一次网,编程实现当输入2011年1月1日以后任意一天,输出该渔夫是在打渔还是在晒网。
代码如下:
#include <stdio.h>
int leap(int a) /*自定义函数leap()用来指定输入的年份是否为闰年*/
{
if((a%4 == 0 && a%100 != 0
- XML中DOCTYPE字段的解析
wyzuomumu
xml
DTD声明始终以!DOCTYPE开头,空一格后跟着文档根元素的名称,如果是内部DTD,则再空一格出现[],在中括号中是文档类型定义的内容. 而对于外部DTD,则又分为私有DTD与公共DTD,私有DTD使用SYSTEM表示,接着是外部DTD的URL. 而公共DTD则使用PUBLIC,接着是DTD公共名称,接着是DTD的URL.
私有DTD
<!DOCTYPErootSYST