python heapq的用法

经常记不住 做个记录

一、heapq库简介

heapq 库是Python标准库之一,提供了构建小顶堆的方法和一些对小顶堆的基本操作方法(如入堆,出堆等),可以用于实现堆排序算法。

堆是一种基本的数据结构,堆的结构是一棵完全二叉树,并且满足堆积的性质:每个节点(叶节点除外)的值都大于等于(或都小于等于)它的子节点。

堆结构分为大顶堆和小顶堆,在heapq中使用的是小顶堆:

  • 大顶堆:每个节点(叶节点除外)的值都大于等于其子节点的值,根节点的值是所有节点中最大的。
  • 小顶堆:每个节点(叶节点除外)的值都小于等于其子节点的值,根节点的值是所有节点中最小的。

在heapq库中,heapq使用的数据类型是Python的基本数据类型 list ,要满足堆积的性质,则在这个列表中,索引 k 的值要小于等于索引 2k+1 的值和索引 2k+2 的值(在完全二叉树中,将数据按广度优先插入,索引为k的节点的子节点索引分别为2k+1和2k+2)。在heapq库的源码中也有介绍,可以读一下heapq的源码,代码不多。

二、使用heapq创建堆

# coding=utf-8
import heapq
 
array = [10, 17, 50, 7, 30, 24, 27, 45, 15, 5, 36, 21]
heap = []
for num in array:
    heapq.heappush(heap, num)
print("array:", array)
print("heap: ", heap)
 
heapq.heapify(array)
print("array:", array)

结果:

array: [10, 17, 50, 7, 30, 24, 27, 45, 15, 5, 36, 21]
heap:  [5, 7, 21, 15, 10, 24, 27, 45, 17, 30, 36, 50]
array: [5, 7, 21, 10, 17, 24, 27, 45, 15, 30, 36, 50]

heapq中创建堆的方法有两种。

heappush(heap, num),先创建一个空堆,然后将数据一个一个地添加到堆中。每添加一个数据后,heap都满足小顶堆的特性。

heapify(array),直接将数据列表调整成一个小顶堆(调整的原理参考上面堆排序的文章,heapq库已经实现了)。

两种方法实现的结果会有差异,如上面的代码中,使用heappush(heap, num)得到的堆结构如下。
python heapq的用法_第1张图片
使用heapify(array)得到的堆结构如下。
python heapq的用法_第2张图片
不过,这两个结果都满足小顶堆的特性,不影响堆的使用(堆只会从堆顶开始取数据,取出数据后会重新调整结构)。

三、使用heapq实现堆排序

array = [10, 17, 50, 7, 30, 24, 27, 45, 15, 5, 36, 21]
heap = []
for num in array:
    heapq.heappush(heap, num)
print(heap[0])
# print(heapq.heappop(heap))
heap_sort = [heapq.heappop(heap) for _ in range(len(heap))]
print("heap sort result: ", heap_sort)
5
heap sort result:  [5, 7, 10, 15, 17, 21, 24, 27, 30, 36, 45, 50]

先将待排序列表中的数据添加到堆中,构造一个小顶堆,打印第一个数据,可以确认它是最小值。然后依次将堆顶的值取出,添加到一个新的列表中,直到堆中的数据取完,新列表就是排序后的列表。

heappop(heap),将堆顶的数据出堆,并将堆中剩余的数据构造成新的小顶堆。

四、获取堆中的最小值或最大值

array = [10, 17, 50, 7, 30, 24, 27, 45, 15, 5, 36, 21]
heapq.heapify(array)
print(heapq.nlargest(2, array))
print(heapq.nsmallest(3, array))

结果:

[50, 45]
[5, 7, 10]

nlargest(num, heap),从堆中取出num个数据,从最大的数据开始取,返回结果是一个列表(即使只取一个数据)。如果num大于等于堆中的数据数量,则从大到小取出堆中的所有数据,不会报错,相当于实现了降序排序。

nsmallest(num, heap),从堆中取出num个数据,从最小的数据开始取,返回结果是一个列表。

你可能感兴趣的:(python,python)