消息队列选型

一、为什么使用消息队列

核心的有3个:解耦、异步、削峰

  • 解耦:一个系统或者一个模块,调用了多个系统或者模块,互相之间的调用很复杂,维护起来很麻烦。如果这个调用不需要直接同步调用接口的,就可以考虑用MQ给他异步化解耦。
  • 异步:A系统接收一个请求,需要在自己本地写库,还需要在BCD三个系统写库,自己本地写库要3ms,BCD三个系统分别写库要300ms、450ms、200ms。最终请求总延时是3 + 300 + 450 + 200 = 953ms,接近1s,如果用mq,只需要写本地库+写mq,BCD自行从mq中读取写库。
  • 削峰:当系统在某一点有大量请求涌入,峰值过大,远远超过系统承受力,系统就会hang死

二、消息队列优缺点

  • 系统可用性降低:系统引入的外部依赖越多,越容易挂掉。一旦MQ挂了,其他系统就不能消费数据,整个系统就崩溃了。
  • 系统复杂性提高:加个MQ进来,怎么保证消息没有重复消费?怎么处理消息丢失的情况?怎么保证消息传递的顺序性?等等...
  • 一致性问题:A系统处理完了直接返回成功了,人都以为你这个请求就成功了,但是问题是,要是BCD三个系统那里,BD两个系统写库成功了,结果C系统写库失败了,这就出现数据不一致问题。

三 、kafka、activemq、rabbitmq、rocketmq比较

特性 ActiveMQ RabbitMQ RocketMQ Kafka
单机吞吐量 万级,吞吐量比RocketMQ和Kafka要低了一个数量级 万级,吞吐量比RocketMQ和Kafka要低了一个数量级 10万级,RocketMQ也是可以支撑高吞吐的一种MQ 10万级别,这是kafka最大的优点,就是吞吐量高。
一般配合大数据类的系统来进行实时数据计算、日志采集等场景
topic数量对吞吐量的影响 topic可以达到几百,几千个的级别,吞吐量会有较小幅度的下降。
这是RocketMQ的一大优势,在同等机器下,可以支撑大量的topic
topic从几十个到几百个的时候,吞吐量会大幅度下降。
所以在同等机器下,kafka尽量保证topic数量不要过多。如果要支撑大规模topic,需要增加更多的机器资源
时效性 ms级 微秒级,这是rabbitmq的一大特点,延迟是最低的 ms级 延迟在ms级以内
可用性 高,基于主从架构实现高可用性 高,基于主从架构实现高可用性 高,基于主从架构实现高可用性 非常高,kafka是分布式的,一个数据多个副本,少数机器宕机,不会丢失数据,不会导致不可用
消息可靠性 有较低的概率丢失数据 经过参数优化配置,可以做到0丢失 经过参数优化配置,消息可以做到0丢失
功能支持 MQ领域的功能极其完备 基于erlang开发,所以并发能力很强,性能极其好,延时很低 MQ功能较为完善,还是分布式的,扩展性好 功能较为简单,主要支持简单的MQ功能,在大数据领域的实时计算以及日志采集被大规模使用,是事实上的标准
优劣势总结 非常成熟,功能强大,在业内大量的公司以及项目中都有应用
偶尔会有较低概率丢失消息
而且现在社区以及国内应用都越来越少,官方社区现在对ActiveMQ 5.x维护越来越少,几个月才发布一个版本
而且确实主要是基于解耦和异步来用的,较少在大规模吞吐的场景中使用
erlang语言开发,性能极其好,延时很低;
吞吐量到万级,MQ功能比较完备
而且开源提供的管理界面非常棒,用起来很好用
社区相对比较活跃,几乎每个月都发布几个版本分
在国内一些互联网公司近几年用rabbitmq也比较多一些
但是问题也是显而易见的,RabbitMQ确实吞吐量会低一些,这是因为他做的实现机制比较重。
而且erlang开发,很难去看懂源码,对它的掌控很弱,基本只能依赖于开源社区的快速维护和修复bug。
而且rabbitmq集群动态扩展会很麻烦。
接口简单易用,而且毕竟在阿里大规模应用过,有阿里品牌保障
日处理消息上百亿之多,可以做到大规模吞吐,性能也非常好,分布式扩展也很方便,社区维护还可以,可靠性和可用性都是ok的,还可以支撑大规模的topic数量,支持复杂MQ业务场景
而且一个很大的优势在于,阿里出品都是java系的,可以自己阅读源码,定制自己公司的MQ,可以掌控
社区活跃度相对较为一般,文档相对来说简单一些,然后接口这块不是按照标准JMS规范走的有些系统要迁移需要修改大量代码
还有就是阿里出台的技术,可能面临技术被抛弃,社区黄掉的风险,但如果公司有技术实力用RocketMQ挺好
仅仅提供较少的核心功能,但是提供超高的吞吐量,ms级的延迟,极高的可用性以及可靠性,而且分布式可以任意扩展
同时kafka最好是支撑较少的topic数量即可,保证其超高吞吐量
而且kafka唯一的一点劣势是有可能消息重复消费,那么对数据准确性会造成极其轻微的影响,在大数据领域中以及日志采集中,这点轻微影响可以忽略
这个特性天然适合大数据实时计算以及日志收集

总结:

中小型公司,技术实力较为一般,技术挑战不是特别高,用RabbitMQ是不错的选择;大型公司,基础架构研发实力较强,用RocketMQ是很好的选择

如果是大数据领域的实时计算、日志采集等场景,用Kafka是业内标准

你可能感兴趣的:(消息队列选型)