docker安装
这里推荐使用docker-compose安装
以下是docker-compose.yml
version: '3'
services:
zookeeper:
image: wurstmeister/zookeeper
ports:
- "2181:2181"
kafka:
image: wurstmeister/kafka
depends_on:
- zookeeper
ports:
- "9092:9092"
environment:
ALLOW_PLAINTEXT_LISTENER: "yes"
KAFKA_LISTENERS: PLAINTEXT://0.0.0.0:9092
KAFKA_ADVERTISED_HOST_NAME: 172.31.245.238
KAFKA_CREATE_TOPICS: "test:1:1"
KAFKA_ZOOKEEPER_CONNECT: zookeeper:2181
volumes:
- ./kafka-log:/kafka
- ALLOW_PLAINTEXT_LISTENER 允许使用PLAINTEXT侦听器。
- depends_on: -zookeeper:kafka依赖于zookeeper
- KAFKA_ADVERTISED_LISTENERS 是指向Kafka代理的可用地址列表。 Kafka将在初次连接时将它们发送给客户。格式为 PLAINTEXT://host:port ,此处已将容器9092端口映射到宿主机9092端口,0.0.0.0为监听所有地址(未验证)
- KAFKA_ADVERTISED_HOST_NAME: 172.31.245.238 :映射宿主机地址
- KAFKA_CREATE_TOPICS: "test:1:1" 预创建主题test, 分区数,分区副本数
- KAFKA_ZOOKEEPER_CONNECT: zookeeper:2181 映射zookeeper
步骤
(1)创建以上yaml文件
(2)在该文件目录下,执行
docker-compose build
docker-compose up -d
SpringBoot简单应用实例
依赖:
org.springframework.kafka
spring-kafka
配置
###########【Kafka集群】###########
spring.kafka.bootstrap-servers=PLAINTEXT://172.31.245.238:9092
###########【初始化生产者配置】###########
# 重试次数
spring.kafka.producer.retries=0
# 应答级别:多少个分区副本备份完成时向生产者发送ack确认(可选0、1、all/-1)
spring.kafka.producer.acks=1
# 批量大小
spring.kafka.producer.batch-size=16384
# 提交延时
spring.kafka.producer.properties.linger.ms=0
# 当生产端积累的消息达到batch-size或接收到消息linger.ms后,生产者就会将消息提交给kafka
# linger.ms为0表示每接收到一条消息就提交给kafka,这时候batch-size其实就没用了
# 生产端缓冲区大小
spring.kafka.producer.buffer-memory = 33554432
# Kafka提供的序列化和反序列化类
spring.kafka.producer.key-serializer=org.apache.kafka.common.serialization.StringSerializer
spring.kafka.producer.value-serializer=org.apache.kafka.common.serialization.StringSerializer
# 自定义分区器
# spring.kafka.producer.properties.partitioner.class=com.felix.kafka.producer.CustomizePartitioner
?
###########【初始化消费者配置】###########
# 默认的消费组ID
spring.kafka.consumer.properties.group.id=defaultConsumerGroup
# 是否自动提交offset
spring.kafka.consumer.enable-auto-commit=true
# 提交offset延时(接收到消息后多久提交offset)
spring.kafka.consumer.auto.commit.interval.ms=1000
# 当kafka中没有初始offset或offset超出范围时将自动重置offset
# earliest:重置为分区中最小的offset;
# latest:重置为分区中最新的offset(消费分区中新产生的数据);
# none:只要有一个分区不存在已提交的offset,就抛出异常;
spring.kafka.consumer.auto-offset-reset=latest
# 消费会话超时时间(超过这个时间consumer没有发送心跳,就会触发rebalance操作)
spring.kafka.consumer.properties.session.timeout.ms=120000
# 消费请求超时时间
spring.kafka.consumer.properties.request.timeout.ms=180000
# Kafka提供的序列化和反序列化类
spring.kafka.consumer.key-deserializer=org.apache.kafka.common.serialization.StringDeserializer
spring.kafka.consumer.value-deserializer=org.apache.kafka.common.serialization.StringDeserializer
# 消费端监听的topic不存在时,项目启动会报错(关掉)
spring.kafka.listener.missing-topics-fatal=false
# 设置批量消费
# spring.kafka.listener.type=batch
# 批量消费每次最多消费多少条消息
# spring.kafka.consumer.max-poll-records=50
spring.kafka.bootstrap-servers=PLAINTEXT://172.31.245.238:9092,其中172.31.245.238为docker-compose的KAFKA_ADVERTISED_HOST_NAME参数。
生产者:
@RestController
@Slf4j
public class KafkaProducer {
@Autowired
private KafkaTemplate kafkaTemplate;
// 直接发送字符串
@GetMapping("/kafka/normal/{message}")
public void sendMessage1(@PathVariable("message") String normalMessage) {
kafkaTemplate.send("test", normalMessage);
}
// 将对象转化为json字符串再发送
@GetMapping("/kafka/sendTopic2")
public void sendMessage2() {
User user = User.builder()
.name("yuanwei")
.password("1234")
.age(12)
.build();
try{
String message= JacksonUtil.objToJson(user);
kafkaTemplate.send("test", message);
}catch (Exception e){
log.error(e.toString());
}
}
}
消费者:
@Component
@Slf4j
public class KafkaConsumer {
// 消费监听
@KafkaListener(topics = {"test"})
public void onMessage1(ConsumerRecord, ?> record){
// 消费的哪个topic、partition的消息,打印出消息内容
System.out.println("简单消费:"+record.topic()+"-"+record.partition()+"-"+record.value());
}
// 将消费到的json字符串转化为对象。
@KafkaListener(topics = {"test"})
public void onMessage2(ConsumerRecord, ?> record){
// 消费的哪个topic、partition的消息,打印出消息内容
System.out.println("对象1消费:"+record.topic()+"-"+record.partition()+"-"+record.value());
try{
User user = (User)JacksonUtil.jsonToObj(new User(),(String)record.value());
System.out.println("对象1消费:"+record.topic()+"-"+record.partition()+"-"+user);
}catch (Exception e){
log.error(e.toString());
}
}
}
json转换工具类
public class JacksonUtil {
/*
* 001.json转换成对象
* @param:传入对象,json字符串
* @return:Object
*/
public static Object jsonToObj(Object obj,String jsonStr) throws JsonParseException, JsonMappingException, IOException {
ObjectMapper mapper = new ObjectMapper();
return obj = mapper.readValue(jsonStr, obj.getClass());
}
/*
* 002.对象转换成json
* @param:传入对象
* @return:json字符串
*/
public static String objToJson(Object obj) throws JsonProcessingException {
ObjectMapper mapper = new ObjectMapper();
return mapper.writeValueAsString(obj);
}
}
User对象
@Data
@Builder
@AllArgsConstructor
@NoArgsConstructor
public class User {
private String name;
private String password;
private Integer age;
}