- 从零开始构建AI原生应用的认知架构
AI原生应用开发
AI-native架构ai
从零开始构建AI原生应用的认知架构关键词:AI原生应用、认知架构、机器学习、知识图谱、神经网络、智能决策、系统设计摘要:本文深入探讨如何从零开始构建AI原生应用的认知架构。我们将从基本概念出发,逐步解析认知架构的核心组件,包括知识表示、推理机制和学习能力等。通过生动的比喻和实际代码示例,帮助读者理解如何设计一个能够模拟人类认知过程的AI系统。文章还将介绍当前最先进的认知架构模型,并展望未来发展趋势
- 宗毅说 | 乌卡瑟时代的生存思考
裂变学院
今天,互联网经济、人工智能、全球化发展对我们的影响,要比我们想象得大得多。在多股合力的相互作用下,这个时代的社会特征、商业特征与之前相比显著不同,我称之为乌卡瑟“VUCASE”。备注:乌卡瑟(VUCASE)这个术语是我自创的,来自于乌卡(VUKA)。VUCA是Volatility(易变性),Uncertainty(不确定性),Complexity(复杂性)、Ambiguity(模糊性)这四个英文单
- [论文阅读] 人工智能 + 软件工程 | 单会话方法论:一种以人类为中心的人工智能辅助软件开发协议
张较瘦_
前沿技术论文阅读人工智能软件工程
单一对话法(SCM):AI辅助软件开发的“全局对话”新思路SingleConversationMethodology:AHuman-CenteredProtocolforAI-AssistedSoftwareDevelopmentarXiv:2507.12665SingleConversationMethodology:AHuman-CenteredProtocolforAI-AssistedSo
- 如何安全使用人工智能大模型
人工智能大模型的安全漏洞在推送,你只要有不一样的解决方案他就会通过学习学会,在别人讨论相同问题时,就会作为解决问题的推荐方案。这种机制是没办法防的。鉴于此我们只能采取如下措施:1.绝对本地部署,就是部署好以后断网,因为你使用时他还是会手机数据往后台传送,我本地部署的大模型在推理时看性能,网络也是有数据流的。也不知道在交换什么。2.既然搞不清楚那就彻底不相信,断网。那么我们要加快进度,快速完成任务,
- PyTorch生成式人工智能(18)——循环神经网络详解与实现
盼小辉丶
pytorchrnn自然语言处理
PyTorch生成式人工智能(18)——循环神经网络详解与实现0.前言1.文本生成的挑战2.循环神经网络2.1文本数据2.2循环神经网络原理3.长短期记忆网络3.自然语言处理基础3.1分词3.2词嵌入3.3词嵌入在自然语言处理中的应用小结系列链接0.前言我们已经学习了如何生成数字和图像等内容。从本节开始,我们将主要聚焦于文本生成。人类语言极其复杂且充满细微差别,不仅仅涉及语法和词汇的理解,还包括上
- 【人工智能99问】卷积神经网络(CNN)的结构和原理是什么?(10/99)
文章目录卷积神经网络(CNN)的结构及原理一、CNN的核心结构1.输入层(InputLayer)2.卷积层(ConvolutionalLayer)2.卷积层的核心机制:局部感受野与权值共享3.池化层(PoolingLayer)4.全连接层(FullyConnectedLayer)5.输出层(OutputLayer)6.辅助层二、CNN的工作原理三、CNN的使用场景1.计算机视觉(最核心场景)2.其
- Deep Multi-scale Convolutional Neural Network for Dynamic Scene Deblurring 论文阅读
钟屿
论文阅读计算机视觉人工智能
用于动态场景去模糊的深度多尺度卷积神经网络摘要针对一般动态场景的非均匀盲去模糊是一个具有挑战性的计算机视觉问题,因为模糊不仅来源于多个物体运动,还来源于相机抖动和场景深度变化。为了去除这些复杂的运动模糊,传统的基于能量优化的方法依赖于简单的假设,例如模糊核是部分均匀或局部线性的。此外,最近的基于机器学习的方法也依赖于在这些假设下生成的合成模糊数据集。这使得传统的去模糊方法在模糊核难以近似或参数化的
- 基于Paillier同态加密算法的金融数据安全共享机制研究【附数据】
金融数据分析与建模专家金融科研助手|论文指导|模型构建✨专业领域:金融数据处理与分析量化交易策略研究金融风险建模投资组合优化金融预测模型开发深度学习在金融中的应用擅长工具:Python/R/MATLAB量化分析机器学习模型构建金融时间序列分析蒙特卡洛模拟风险度量模型金融论文指导内容:金融数据挖掘与处理量化策略开发与回测投资组合构建与优化金融风险评估模型期刊论文✅具体问题可以私信或查看文章底部二维码
- 吴恩达 机器学习cs229-学习笔记-更新中
是娜个二叉树!
机器学习学习笔记
吴恩达机器学习cs22901基础概念语言:Matlab/python监督学习定义:获取一组数据集拟合数据从X到Y的映射回归问题:预测的Y是连续的,Y是实数分类问题:分类指的是Y取离散值,输出是离散的两组,正示例和负示例,把所有样本推到这条直线上,用0,1,标识逻辑回归算法,拟合直线区分正,负示例处理相对大量特征的回归算法或者分类算法支持向量机算法:它使用的不是1,2,3,10个输入特征,而是使用无
- 「日拱一码」033 机器学习——严格划分
胖达不服输
「日拱一码」机器学习人工智能严格划分组划分
目录简单随机划分(train_test_split)分组划分(GroupSplitting)简单分组划分(GroupSplitting)分层分组划分(StratifiedGroupSplitting)交叉验证法(Cross-Validation)分组K折交叉验证(GroupKFold)留一组法(LeaveOneGroupOut)简单随机划分(train_test_split)简单随机分组通过随机分
- 基于深度学习的手写数字和符号识别系统:YOLOv5/v6/v7/v8/v10模型实现与UI界面集成
YOLO实战营
深度学习YOLOui人工智能目标检测计算机视觉
1.引言随着人工智能和深度学习技术的发展,手写数字和符号识别已经成为计算机视觉领域的重要研究方向。手写识别在很多实际应用中扮演着关键角色,例如邮政编码识别、表单自动处理和智能教育系统等。传统的手写识别方法通常依赖于复杂的特征工程,而深度学习则能够自动从数据中学习到特征,极大地提高了识别精度和速度。本文将介绍如何构建一个基于YOLO系列模型(YOLOv5、YOLOv6、YOLOv7、YOLOv8、Y
- 【人工智能艺术革命:科技灵感与艺术创新的交融纪元】
陈辰学长
人工智能科技
【人工智能艺术革命:科技灵感与艺术创新的交融纪元】在21世纪的科技浪潮中,人工智能(AI)作为一股不可忽视的力量,正以前所未有的速度渗透并重塑着我们的生活、工作乃至艺术创作领域。其中,AI绘画作为科技与艺术深度融合的产物,不仅挑战了传统艺术的边界,更开启了一个充满无限想象与可能的新时代。本文将从AI绘画的定义与发展历程、技术原理、对艺术创作的影响、面临的挑战与机遇以及未来展望等多个维度,深入探讨这
- 从零开始:搭建你的人工智能开发环境
人工智能教程
人工智能YOLO机器学习transformer线性回归动态规划排序算法
前言在人工智能和机器学习的旅程中,一个稳定且高效的开发环境是成功的关键第一步。无论是初学者还是经验丰富的开发者,一个配置良好的开发环境都能大大提高工作效率,减少遇到的问题。本文将从零开始,逐步指导你如何搭建一个完整的人工智能开发环境,包括操作系统选择、Python安装、常用库的配置以及开发工具的选择。一、选择合适的操作系统(一)主流操作系统介绍在搭建人工智能开发环境时,首先需要选择一个合适的操作系
- 骗局揭露:光远投研会马光远,环境排放3.0被骗不靠谱!不可信!真相震惊!
易星辰分享普法
关于曝光网上光远投研会马光远在炒股群推荐智慧农业中粮仓平台骗局的文章,其内容主要揭示了近期频发的一种投资诈骗手段。以下是该骗局的主要特点和步骤:为什么明明跟老师对过视频,确认是本人,怎么还会被骗了?你有没有想过一个名人大咖怎么会有时间给你们一对一视频,其次我来给大家揭露一下,这个套路AI换脸骗局是一种利用人工智能技术,通过替换视频中的人脸来伪造身份或进行诈骗的行为。你的账户“余额”是真的吗?为什么
- 【Grafana】Prometheus指标可视化Grafana,手把手教你如何自定义图形
景天科技苑
grafanaprometheusprometheus可视化grafana自定义图形手撕grafana自定义监控图形
✨✨欢迎大家来到景天科技苑✨✨养成好习惯,先赞后看哦~作者简介:景天科技苑《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi,flask等框架,云原生k8s,Prometheu
- SpringBoot单元测试全攻略:MockMVC+Testcontainers+覆盖率分析
fanxbl957
Webspringboot单元测试后端
博主介绍:Java、Python、js全栈开发“多面手”,精通多种编程语言和技术,痴迷于人工智能领域。秉持着对技术的热爱与执着,持续探索创新,愿在此分享交流和学习,与大家共进步。DeepSeek-行业融合之万象视界(附实战案例详解100+)全栈开发环境搭建运行攻略:多语言一站式指南(环境搭建+运行+调试+发布+保姆级详解)感兴趣的可以先收藏起来,希望帮助更多的人SpringBoot单元测试全攻略:
- AI作画:AI人工智能激发艺术创作灵感
AGI大模型与大数据研究院
AI作画人工智能ai
AI作画:AI人工智能激发艺术创作灵感关键词:AI作画、生成艺术、深度学习、神经网络、艺术创作、人工智能、创意工具摘要:本文深入探讨AI作画技术如何激发艺术创作灵感。我们将从基础概念出发,解释AI如何"学习"艺术风格并生成新作品,分析核心技术原理,提供实际应用案例,并展望这一领域的未来发展趋势。通过通俗易懂的讲解和实际代码示例,帮助读者理解这项融合科技与艺术的创新技术。背景介绍目的和范围本文旨在向
- 基于机器学习的加密货币资金费率预测与套利策略
云梦量化科技
python
一、资金费率机制解析永续合约的资金费率是加密货币衍生品市场独有的机制,旨在使永续合约价格锚定现货价格。资金费率每8小时结算一次,结算时多空双方互相支付资金费用:费率为正时,多头支付给空头;费率为负时,空头支付给多头。此机制既促使永续合约价格回归现货价格,也反映市场多空情绪。某安永续合约资金费率计算公式通常为:资金费率 F = 平均溢价指数 P + Clamp(综合利率 I − 溢价指数 P, +0
- 从文本到语音:使用 ElevenLabs 和 FFmpeg 实现语音合成与播放
曦紫沐
语音模型ffmpegElevenLabs语音合成
摘要在当今的人工智能时代,语音合成技术正变得越来越普及。ElevenLabs是一个强大的语音合成平台,能够生成高质量的语音音频。本文将详细介绍如何结合Python、ElevenLabsAPI和FFmpeg工具集,实现从文本到语音的转换,并通过ffplay播放生成的音频文件。同时,我们将解决常见的问题,如ffplay未找到或音频无法播放等。1.引言随着人工智能技术的发展,语音合成(Text-to-S
- DK遇见未来:机器人
祖爸
人工智能、AI、机械设计、BigData……这些听起来就很高端的专业究竟是什么?这些前沿学科相遇又会碰撞出什么?机器人,将这些前沿领域结合在一起越来越多的融入到我们的工作与生活中可问题来了机器人究竟是什么呢?又该如何给孩子讲机器人呢?这本《DK遇见未来:机器人》完美解决您的烦恼最新数据、系统知识、精美插图可以说这是一本儿童机器人大百科让孩子在这里遇见未来在讲读版视频中与您共同思考未来社会中机器人与
- ORACLE 11g 使用ROWNUM完美解决ORA-00600 内部错误代码
有点智慧
分享一下我老师大神的人工智能教程!零基础,通俗易懂!http://blog.csdn.net/jiangjunshow也欢迎大家转载本篇文章。分享知识,造福人民,实现我们中华民族伟大复兴!1,ORA-00600:内部错误代码Oracle从11.2.0.1升级到11.2.0.4,开发人员报告说一个job运行失败,调试有报错信息,ORA-00600:内部错误代码,参数:[rwoirw:checkret
- Kimi-Audio:最佳音LLM, 如何免费使用 Kimi-Audio AI 模型?
知识大胖
NVIDIAGPU和大语言模型开发教程人工智能kimi
简介继DeepSeek之后,字节跳动(现名MoonShotAI,又名Kimi)也在生成式人工智能领域加速发展,并发布了自己的音频模型Kimi-Audio,据说是迄今为止最好的音频模型。推荐文章《NvidiaGPU入门教程之02ubuntu安装A100显卡驱动(含8步快速浓缩教程)》权重2,安装A100显卡驱动《本地大模型知识库OpenWebUI系列之如何解决知识库上传文件故障Extractedco
- Python就业薪资好不好,学Python工作机会多吗?
Python小辰
Python就业薪资好不好?学Python工作机会多吗?人工智能时代的来临让Python崭露头角,各大企业纷纷加大对相关人才的招聘力度吸引了很多人入行学习Python。近年来Python开发发展迅猛,吸引了很多科技公司入驻,且看小编的分析。Python薪资好不好?数据是最有力的答案。职友集统计数据显示,全国Python工程师的平均月资达19160,其中20-30K的工程师数量超过了四成。来自智联招
- 机器人-组成结构-感知 - 决策 - 执行
具身智能-查布嘎
具身智能机器人人工智能
目录一、感知系统内部传感器:外部传感器:二、智能决策系统机器学习家族1.1机器学习2.1深度学习2.2深度学习模型(主要属于监督/强化学习范畴,但结构通用):3.1监督学习3.2监督学习模型4.1半监督学习4.2无/半监督学习模型:5.1无监督学习5.2生成模型(可属于监督/无监督):6.1强化学习7.1其他学习三、控制系统(运控)①对应小脑和脊柱一、感知系统①对应人体的五官。由具有不同功能的各种
- 机器学习入门(五):线性回归—从模型函数到目标函数
米饭超人
从数据反推公式假设我们获得了这样一张表格,上面列举了美国纽约若干程序员职位的年薪:enterimagedescriptionhere大家可以看到,表格中列举了职位、经验、技能、国家和城市几项特征。除了经验一项,其他都是一样的。不同的经验(工作年限),薪水不同。而且看起来,工作年头越多,工资也就越高。那么我们把Experience与Salary抽取出来,用x和y来分别指代它们。enterimaged
- AI驱动的电路仿真革命:从物理模型到智能学习的范式转移
AI驱动的电路仿真革命:从物理模型到智能学习的范式转移人工智能正颠覆传统电路仿真方法,本文将深入解析AI在电路建模、优化与故障诊断中的前沿应用,揭示智能仿真如何提升10倍效率并突破物理限制。一、AI电路仿真的数学基础1.1图神经网络建模电路拓扑电路可抽象为图结构G=(V,E)G=(V,E)G=(V,E):VVV:节点(电子元件)EEE:边(连接关系)图卷积网络(GCN)更新公式:H(l+1)=σ(
- MCP协议技术解析:AI时代的通信基础设施革命
MCP协议技术解析:AI时代的通信基础设施革命在AI从工具演变为协作伙伴的进程中,MCP协议正在成为连接智能体与现实世界的“数字神经系统”。当前人工智能技术正经历从孤立模型向生态系统协作的关键转型,而通信协议作为AI能力的“连接器”,其设计直接决定了智能系统的边界与效率。MCP协议(ModelContextProtocol)作为新一代AI通信基础设施,正在开发者社区引发一场静默革命。本文将从技术原
- GENERALIST REWARD MODELS: FOUND INSIDE LARGELANGUAGE MODELS
樱花的浪漫
大模型与智能体对抗生成网络与动作识别强化学习语言模型人工智能自然语言处理深度学习机器学习计算机视觉
GeneralistRewardModels:FoundInsideLargeLanguageModelshttps://arxiv.org/pdf/2506.232351.概述将大型语言模型(LLMs)与复杂的人类价值观(如乐于助人和诚实)对齐,仍然是人工智能发展中的一个核心挑战。这项任务的主要范式是来自人类反馈的强化学习(RLHF)[Christianoetal.,2017;Baietal.,
- Python深度学习实践:LSTM与GRU在序列数据预测中的应用
AI智能应用
Python入门实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
Python深度学习实践:LSTM与GRU在序列数据预测中的应用作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来序列数据预测是机器学习领域的一个重要研究方向,涉及时间序列分析、自然语言处理、语音识别等多个领域。序列数据具有时间依赖性,即序列中每个元素都受到前面元素的影响。传统的机器学习算法难以捕捉这种时间依赖性,而深度学习
- 一个例子带你入门机器学习
目录1.为建模选择数据2.选择预测目标3.选择“特征”4.构建您的模型(这篇文章将使用经典墨尔本房价数据集作为例子,引导机器学习的流程,数据集为melb_data.csv,请在csdn的下载区自行下载,运行代码时需要将数据集下载在同个目录下)1.为建模选择数据数据集有太多的变量,多到难以理解,甚至无法很好地打印出来。如何将这海量的数据削减为能够理解的内容?我们将首先凭借直觉选择几个变量。后续将介绍
- 面向对象面向过程
3213213333332132
java
面向对象:把要完成的一件事,通过对象间的协作实现。
面向过程:把要完成的一件事,通过循序依次调用各个模块实现。
我把大象装进冰箱这件事为例,用面向对象和面向过程实现,都是用java代码完成。
1、面向对象
package bigDemo.ObjectOriented;
/**
* 大象类
*
* @Description
* @author FuJian
- Java Hotspot: Remove the Permanent Generation
bookjovi
HotSpot
openjdk上关于hotspot将移除永久带的描述非常详细,http://openjdk.java.net/jeps/122
JEP 122: Remove the Permanent Generation
Author Jon Masamitsu
Organization Oracle
Created 2010/8/15
Updated 2011/
- 正则表达式向前查找向后查找,环绕或零宽断言
dcj3sjt126com
正则表达式
向前查找和向后查找
1. 向前查找:根据要匹配的字符序列后面存在一个特定的字符序列(肯定式向前查找)或不存在一个特定的序列(否定式向前查找)来决定是否匹配。.NET将向前查找称之为零宽度向前查找断言。
对于向前查找,出现在指定项之后的字符序列不会被正则表达式引擎返回。
2. 向后查找:一个要匹配的字符序列前面有或者没有指定的
- BaseDao
171815164
seda
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.SQLException;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
public class BaseDao {
public Conn
- Ant标签详解--Java命令
g21121
Java命令
这一篇主要介绍与java相关标签的使用 终于开始重头戏了,Java部分是我们关注的重点也是项目中用处最多的部分。
1
- [简单]代码片段_电梯数字排列
53873039oycg
代码
今天看电梯数字排列是9 18 26这样呈倒N排列的,写了个类似的打印例子,如下:
import java.util.Arrays;
public class 电梯数字排列_S3_Test {
public static void main(S
- Hessian原理
云端月影
hessian原理
Hessian 原理分析
一. 远程通讯协议的基本原理
网络通信需要做的就是将流从一台计算机传输到另外一台计算机,基于传输协议和网络 IO 来实现,其中传输协议比较出名的有 http 、 tcp 、 udp 等等, http 、 tcp 、 udp 都是在基于 Socket 概念上为某类应用场景而扩展出的传输协
- 区分Activity的四种加载模式----以及Intent的setFlags
aijuans
android
在多Activity开发中,有可能是自己应用之间的Activity跳转,或者夹带其他应用的可复用Activity。可能会希望跳转到原来某个Activity实例,而不是产生大量重复的Activity。
这需要为Activity配置特定的加载模式,而不是使用默认的加载模式。 加载模式分类及在哪里配置
Activity有四种加载模式:
standard
singleTop
- hibernate几个核心API及其查询分析
antonyup_2006
html.netHibernatexml配置管理
(一) org.hibernate.cfg.Configuration类
读取配置文件并创建唯一的SessionFactory对象.(一般,程序初始化hibernate时创建.)
Configuration co
- PL/SQL的流程控制
百合不是茶
oraclePL/SQL编程循环控制
PL/SQL也是一门高级语言,所以流程控制是必须要有的,oracle数据库的pl/sql比sqlserver数据库要难,很多pl/sql中有的sqlserver里面没有
流程控制;
分支语句 if 条件 then 结果 else 结果 end if ;
条件语句 case when 条件 then 结果;
循环语句 loop
- 强大的Mockito测试框架
bijian1013
mockito单元测试
一.自动生成Mock类 在需要Mock的属性上标记@Mock注解,然后@RunWith中配置Mockito的TestRunner或者在setUp()方法中显示调用MockitoAnnotations.initMocks(this);生成Mock类即可。二.自动注入Mock类到被测试类 &nbs
- 精通Oracle10编程SQL(11)开发子程序
bijian1013
oracle数据库plsql
/*
*开发子程序
*/
--子程序目是指被命名的PL/SQL块,这种块可以带有参数,可以在不同应用程序中多次调用
--PL/SQL有两种类型的子程序:过程和函数
--开发过程
--建立过程:不带任何参数
CREATE OR REPLACE PROCEDURE out_time
IS
BEGIN
DBMS_OUTPUT.put_line(systimestamp);
E
- 【EhCache一】EhCache版Hello World
bit1129
Hello world
本篇是EhCache系列的第一篇,总体介绍使用EhCache缓存进行CRUD的API的基本使用,更细节的内容包括EhCache源代码和设计、实现原理在接下来的文章中进行介绍
环境准备
1.新建Maven项目
2.添加EhCache的Maven依赖
<dependency>
<groupId>ne
- 学习EJB3基础知识笔记
白糖_
beanHibernatejbosswebserviceejb
最近项目进入系统测试阶段,全赖袁大虾领导有力,保持一周零bug记录,这也让自己腾出不少时间补充知识。花了两天时间把“传智播客EJB3.0”看完了,EJB基本的知识也有些了解,在这记录下EJB的部分知识,以供自己以后复习使用。
EJB是sun的服务器端组件模型,最大的用处是部署分布式应用程序。EJB (Enterprise JavaBean)是J2EE的一部分,定义了一个用于开发基
- angular.bootstrap
boyitech
AngularJSAngularJS APIangular中文api
angular.bootstrap
描述:
手动初始化angular。
这个函数会自动检测创建的module有没有被加载多次,如果有则会在浏览器的控制台打出警告日志,并且不会再次加载。这样可以避免在程序运行过程中许多奇怪的问题发生。
使用方法: angular .
- java-谷歌面试题-给定一个固定长度的数组,将递增整数序列写入这个数组。当写到数组尾部时,返回数组开始重新写,并覆盖先前写过的数
bylijinnan
java
public class SearchInShiftedArray {
/**
* 题目:给定一个固定长度的数组,将递增整数序列写入这个数组。当写到数组尾部时,返回数组开始重新写,并覆盖先前写过的数。
* 请在这个特殊数组中找出给定的整数。
* 解答:
* 其实就是“旋转数组”。旋转数组的最小元素见http://bylijinnan.iteye.com/bl
- 天使还是魔鬼?都是我们制造
ducklsl
生活教育情感
----------------------------剧透请原谅,有兴趣的朋友可以自己看看电影,互相讨论哦!!!
从厦门回来的动车上,无意中瞟到了书中推荐的几部关于儿童的电影。当然,这几部电影可能会另大家失望,并不是类似小鬼当家的电影,而是关于“坏小孩”的电影!
自己挑了两部先看了看,但是发现看完之后,心里久久不能平
- [机器智能与生物]研究生物智能的问题
comsci
生物
我想,人的神经网络和苍蝇的神经网络,并没有本质的区别...就是大规模拓扑系统和中小规模拓扑分析的区别....
但是,如果去研究活体人类的神经网络和脑系统,可能会受到一些法律和道德方面的限制,而且研究结果也不一定可靠,那么希望从事生物神经网络研究的朋友,不如把
- 获取Android Device的信息
dai_lm
android
String phoneInfo = "PRODUCT: " + android.os.Build.PRODUCT;
phoneInfo += ", CPU_ABI: " + android.os.Build.CPU_ABI;
phoneInfo += ", TAGS: " + android.os.Build.TAGS;
ph
- 最佳字符串匹配算法(Damerau-Levenshtein距离算法)的Java实现
datamachine
java算法字符串匹配
原文:http://www.javacodegeeks.com/2013/11/java-implementation-of-optimal-string-alignment.html------------------------------------------------------------------------------------------------------------
- 小学5年级英语单词背诵第一课
dcj3sjt126com
englishword
long 长的
show 给...看,出示
mouth 口,嘴
write 写
use 用,使用
take 拿,带来
hand 手
clever 聪明的
often 经常
wash 洗
slow 慢的
house 房子
water 水
clean 清洁的
supper 晚餐
out 在外
face 脸,
- macvim的使用实战
dcj3sjt126com
macvim
macvim用的是mac里面的vim, 只不过是一个GUI的APP, 相当于一个壳
1. 下载macvim
https://code.google.com/p/macvim/
2. 了解macvim
:h vim的使用帮助信息
:h macvim
- java二分法查找
蕃薯耀
java二分法查找二分法java二分法
java二分法查找
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年6月23日 11:40:03 星期二
http:/
- Spring Cache注解+Memcached
hanqunfeng
springmemcached
Spring3.1 Cache注解
依赖jar包:
<!-- simple-spring-memcached -->
<dependency>
<groupId>com.google.code.simple-spring-memcached</groupId>
<artifactId>simple-s
- apache commons io包快速入门
jackyrong
apache commons
原文参考
http://www.javacodegeeks.com/2014/10/apache-commons-io-tutorial.html
Apache Commons IO 包绝对是好东西,地址在http://commons.apache.org/proper/commons-io/,下面用例子分别介绍:
1) 工具类
2
- 如何学习编程
lampcy
java编程C++c
首先,我想说一下学习思想.学编程其实跟网络游戏有着类似的效果.开始的时候,你会对那些代码,函数等产生很大的兴趣,尤其是刚接触编程的人,刚学习第一种语言的人.可是,当你一步步深入的时候,你会发现你没有了以前那种斗志.就好象你在玩韩国泡菜网游似的,玩到一定程度,每天就是练级练级,完全是一个想冲到高级别的意志力在支持着你.而学编程就更难了,学了两个月后,总是觉得你好象全都学会了,却又什么都做不了,又没有
- 架构师之spring-----spring3.0新特性的bean加载控制@DependsOn和@Lazy
nannan408
Spring3
1.前言。
如题。
2.描述。
@DependsOn用于强制初始化其他Bean。可以修饰Bean类或方法,使用该Annotation时可以指定一个字符串数组作为参数,每个数组元素对应于一个强制初始化的Bean。
@DependsOn({"steelAxe","abc"})
@Comp
- Spring4+quartz2的配置和代码方式调度
Everyday都不同
代码配置spring4quartz2.x定时任务
前言:这些天简直被quartz虐哭。。因为quartz 2.x版本相比quartz1.x版本的API改动太多,所以,只好自己去查阅底层API……
quartz定时任务必须搞清楚几个概念:
JobDetail——处理类
Trigger——触发器,指定触发时间,必须要有JobDetail属性,即触发对象
Scheduler——调度器,组织处理类和触发器,配置方式一般只需指定触发
- Hibernate入门
tntxia
Hibernate
前言
使用面向对象的语言和关系型的数据库,开发起来很繁琐,费时。由于现在流行的数据库都不面向对象。Hibernate 是一个Java的ORM(Object/Relational Mapping)解决方案。
Hibernte不仅关心把Java对象对应到数据库的表中,而且提供了请求和检索的方法。简化了手工进行JDBC操作的流程。
如
- Math类
xiaoxing598
Math
一、Java中的数字(Math)类是final类,不可继承。
1、常数 PI:double圆周率 E:double自然对数
2、截取(注意方法的返回类型) double ceil(double d) 返回不小于d的最小整数 double floor(double d) 返回不大于d的整最大数 int round(float f) 返回四舍五入后的整数 long round