ABAQUS材料子程序学习(线性各向同性硬化塑性)

ABAQUS材料子程序学习(线性各向同性硬化塑性)

  • 前言
    • 塑性力学增量形式实现
    • umat子程序
    • 参数
    • 计算结果

前言

记录自己学习abaqus软件umat子程序的t过程,本文主要参考了《非线性本构关系在ABAQUS中的实现》第四章和技术邻的视频课程“非线性各向同性强化弹塑性umat子程序教程”

塑性力学增量形式实现

计算过程中,体应变和体应力是弹性关系 Δ σ v = K ⋅ Δ ε v (1) {Δσ_v}={K}\cdot{Δε_v}\tag{1} Δσv=KΔεv(1)

K K K为体积模量, K = E 3 ( 1 − ν ) K=\cfrac{E}{3(1-ν)} K=3(1ν)E , Δ ε v = Δ ε 11 + Δ ε 22 + Δ ε 33 Δε_v=Δε_{11}+Δε_{22}+Δε_{33} Δεv=Δε11+Δε22+Δε33

所以在下面的讨论中只考虑偏应力张量和偏应力张量

试应力: σ t r ′ ( t ) = σ ′ ( t ) + C ′ : Δ ε ′ (2) \bm{σ^{tr'}(t)=σ'(t)+\mathbb{C'}:Δε'}\tag{2} σtr(t)=σ(t)+C:Δε(2)

viogt表记:
{ σ 11 t r ′ σ 22 t r ′ σ 33 t r ′ σ 12 t r ′ σ 23 t r ′ σ 13 t r ′ } = { σ ′ 11 ( t ) σ ′ 22 ( t ) σ ′ 33 ( t ) σ ′ 12 ( t ) σ ′ 23 ( t ) σ ′ 13 ( t ) } + [ 2 G 0 0 0 0 0 0 2 G 0 0 0 0 0 0 2 G 0 0 0 0 0 0 G 0 0 0 0 0 0 G 0 0 0 0 0 0 G ] ⋅ { Δ ε ′ 11 ( t ) Δ ε ′ 22 ( t ) Δ ε ′ 33 ( t ) Δ γ 12 ( t ) Δ γ 23 ( t ) Δ γ 13 ( t ) } \left \{ \begin{matrix} σ_{11}^{tr'}\\ σ_{22}^{tr'}\\ σ_{33}^{tr'}\\ σ_{12}^{tr'}\\ σ_{23}^{tr'}\\ σ_{13}^{tr'}\end{matrix} \right \} =\left \{ \begin{matrix} {σ'}_{11}(t)\\ {σ'}_{22}(t)\\{σ'}_{33}(t)\\{σ'}_{12}(t)\\{σ'}_{23}(t)\\{σ'}_{13}(t)\end{matrix} \right \} +\left [\begin{matrix} 2G&0&0&0&0&0 \\ 0&2G&0&0&0&0 \\ 0&0& 2G&0&0&0 \\ 0&0&0& G&0&0 \\ 0&0&0&0& G&0 \\ 0&0&0&0&0 &G \end{matrix} \right ] \cdot \left \{ \begin{matrix} {Δε'}_{11}(t)\\ {Δε'}_{22}(t)\\{Δε'}_{33}(t)\\{Δγ}_{12}(t)\\{Δγ}_{23}(t)\\{Δγ}_{13}(t)\end{matrix} \right \} σ11trσ22trσ33trσ12trσ23trσ13tr=σ11(t)σ22(t)σ33(t)σ12(t)σ23(t)σ13(t)+2G0000002G0000002G000000G000000G000000GΔε11(t)Δε22(t)Δε33(t)Δγ12(t)Δγ23(t)Δγ13(t)
静态分析umat用的工程应变: { Δ ε ′ 11 ( t ) Δ ε ′ 22 ( t ) Δ ε ′ 33 ( t ) Δ γ 12 ( t ) Δ γ 23 ( t ) Δ γ 13 ( t ) } = { Δ ε ′ 11 ( t ) Δ ε ′ 22 ( t ) Δ ε ′ 33 ( t ) 2 Δ ε ′ 12 ( t ) 2 Δ ε ′ 23 ( t ) 2 Δ ε ′ 13 ( t ) } \left \{ \begin{matrix} {Δε'}_{11}(t)\\ {Δε'}_{22}(t)\\{Δε'}_{33}(t)\\{Δγ}_{12}(t)\\{Δγ}_{23}(t)\\{Δγ}_{13}(t)\end{matrix} \right \} = \left \{ \begin{matrix} {Δε'}_{11}(t)\\ {Δε'}_{22}(t)\\{Δε'}_{33}(t)\\{2Δε'}_{12}(t)\\{2Δε'}_{23}(t)\\{2Δε'}_{13}(t)\end{matrix} \right \} Δε11(t)Δε22(t)Δε33(t)Δγ12(t)Δγ23(t)Δγ13(t)=Δε11(t)Δε22(t)Δε33(t)2Δε12(t)2Δε23(t)2Δε13(t)

Mises等效应力:

主应力形式:
σ e = { 1 2 [ ( σ 1 − σ 2 ) 2 + ( σ 2 − σ 3 ) 2 + ( σ 3 − σ 1 ) 2 ] } 1 2 {σ_e}=\left \{ \frac{1}{2} \left [ \left (\sigma_1- \sigma_2 \right )^2+ \left (\sigma_2- \sigma_3 \right )^2+\left (\sigma_3- \sigma_1 \right )^2 \right ] \right \}^{\frac{1}{2}} σe={21[(σ1σ2)2+(σ2σ3)2+(σ3σ1)2]}21

偏应力形式:
σ e = [ 3 2 ( σ 11 ′ 2 + σ 22 ′ 2 + σ 33 ′ 2 + 2 σ 12 2 + 2 σ 23 2 + 2 σ 13 2 ) ] 1 2 (3) {σ_e}= \left [{\frac{3}{2}} \left ({\sigma'_{11}}^2+ {\sigma'_{22}}^2+{\sigma'_{33}}^2+2{\sigma_{12}}^2+2{\sigma_{23}}^2+2{\sigma_{13}}^2\right )\right ]^{\frac{1}{2}}\tag{3} σe=[23(σ112+σ222+σ332+2σ122+2σ232+2σ132)]21(3)

其中: σ 11 ′ = σ 11 − σ v \sigma'_{11}=\sigma_{11}-\sigma_{v} σ11=σ11σv σ 22 ′ = σ 22 − σ v \sigma'_{22}=\sigma_{22}-\sigma_{v} σ22=σ22σv σ 33 ′ = σ 33 − σ v \sigma'_{33}=\sigma_{33}-\sigma_{v} σ33=σ33σv σ v = 1 3 [ σ 11 + σ 22 + σ 33 ] \sigma_{v}=\frac{1}{3} \left [\sigma_{11}+\sigma_{22}+\sigma_{33} \right] σv=31[σ11+σ22+σ33]

Mises等效塑性应变增量:
Δ ε ˉ p = 2 3 [ ( Δ ε 1 p − Δ ε 2 p ) 2 + ( Δ ε 2 p − Δ ε 3 p ) 2 + ( Δ ε 3 p − Δ ε 1 p ) 2 ] 1 2 Δ\bar{ε}^p=\frac{\sqrt{2}}{3} \left[ \left(Δε_{1}^p-Δε_{2}^p \right)^2 +\left(Δε_{2}^p-Δε_{3}^p \right)^2 +\left(Δε_{3}^p-Δε_{1}^p \right)^2\right]^{\frac{1}{2}} Δεˉp=32 [(Δε1pΔε2p)2+(Δε2pΔε3p)2+(Δε3pΔε1p)2]21

线性硬化塑性 σ y = σ y 0 + h ε ˉ p (4) {σ_y}={σ_{y0}}+h\bar{ε}^p\tag{4} σy=σy0+hεˉp(4)
初始屈服加上等效塑性应变乘以硬化系数。
等效塑性变形作为状态变量存在STATEV(NSTATV)中,提取 ε ˉ p \bar{ε}^p εˉp 并计算当前的屈服应力 σ y {σ_y} σy

(2)代入(3),计算试应力的等效Mises应力 σ M i s e s t r {σ}_{Mises}^{tr} σMisestr

判断 σ M i s e s t r {σ}_{Mises}^{tr} σMisestr σ y {σ_y} σy 关系:

σ M i s e s t r < σ y {σ}_{Mises}^{tr}<{σ_y} σMisestrσy σ ( t + Δ t ) = σ t r ( t ) \bm{σ(t+Δt)}=\bm{σ^{tr}(t)} σ(t+Δt)=σtr(t)

一致切线刚度矩阵,为弹性刚度矩阵
D D S D D E ( i , j ) = [ 2 G + λ λ λ 0 0 0 λ 2 G + λ λ 0 0 0 λ λ 2 G + λ 0 0 0 0 0 0 G 0 0 0 0 0 0 G 0 0 0 0 0 0 G ] (5) \bm{DDSDDE}(i,j) =\left [\begin{matrix} 2G+λ&λ&λ&0&0&0 \\ λ&2G+λ&λ&0&0&0 \\ λ&λ& 2G+λ&0&0&0 \\ 0&0&0& G&0&0 \\ 0&0&0&0& G&0 \\ 0&0&0&0&0 &G \end{matrix} \right ]\tag{5} DDSDDE(i,j)=2G+λλλ000λ2G+λλ000λλ2G+λ000000G000000G000000G(5)

σ M i s e s t r ≥ σ y {σ}_{Mises}^{tr}≥{σ_y} σMisestrσy ,计算新增的 Δ ε ˉ p Δ\bar{ε}^p Δεˉp

ABAQUS材料子程序学习(线性各向同性硬化塑性)_第1张图片

注:单轴拉伸下Mises等效应力 σ M i s e s = [ 1 2 ( σ 11 2 + σ 11 2 ) ] 1 2 = σ 11 {σ}_{Mises}=\left[ \frac{1}{2} \left( {σ}_{11}^2+ {σ}_{11}^2\right) \right]^{\frac{1}{2}}={σ}_{11} σMises=[21(σ112+σ112)]21=σ11
等效应变 ε M i s e s = 2 3 [ 2 ( ε 11 − ( − μ ε 11 ) ) 2 ] 1 2 = 2 3 ( 1 + μ ) ε 11 {ε}_{Mises}=\frac{\sqrt{2}}{3} \left[ 2\left( {ε}_{11}-(-μ{ε}_{11}) \right)^2 \right]^{\frac{1}{2}}={\frac{2}{3}}(1+μ){ε}_{11} εMises=32 [2(ε11(με11))2]21=32(1+μ)ε11
单轴拉伸: σ 11 = E ⋅ ε 11 {σ}_{11}=E·{ε}_{11} σ11=Eε11 σ M i s e s = 3 E 2 ( 1 + μ ) ⋅ ε M i s e s = 3 G ⋅ ε M i s e s {σ}_{Mises}=\frac{3E}{2(1+μ)}·{ε}_{Mises}=3G·{ε}_{Mises} σMises=2(1+μ)3EεMises=3GεMises

计算新增的 Δ ε ˉ p Δ\bar{ε}^p Δεˉp, h h h为塑性硬化系数
σ M i s e s t r − 3 G Δ ε ˉ p = σ y 0 + h ⋅ ( ε ˉ p + Δ ε ˉ p ) {σ}_{Mises}^{tr}-3GΔ\bar{ε}^p=σ_{y0}+h·(\bar{ε}^p+Δ\bar{ε}^p) σMisestr3GΔεˉp=σy0+h(εˉp+Δεˉp)
σ M i s e s t r − h ⋅ ε ˉ p − σ y 0 = ( h + 3 G ) Δ ε ˉ p {σ}_{Mises}^{tr}- h·\bar{ε}^p-σ_{y0}=(h+3G)Δ\bar{ε}^p σMisestrhεˉpσy0=(h+3G)Δεˉp
Δ ε ˉ p = σ M i s e s t r − h ⋅ ε ˉ p − σ y 0 ( h + 3 G ) Δ\bar{ε}^p=\frac{{σ}_{Mises}^{tr}- h·\bar{ε}^p-σ_{y0}}{(h+3G)} Δεˉp=(h+3G)σMisestrhεˉpσy0
非线性硬化时 h h h 是随等效塑性应变 ε ˉ p \bar{ε}^p εˉp变化的,通常利用Newton迭代法求解等效塑性应变增量 Δ ε ˉ p Δ\bar{ε}^p Δεˉp

根据正交流动法则:
Δ ε p = Δ ε ˉ p 3 2 σ ′ σ M i s e s = Δ ε ˉ p 3 2 σ t r ′ σ M i s e s t r \bm{Δε^p}=Δ\bar{ε}^p\frac{3}{2}\frac{\bm{σ'}}{σ_{Mises}}=Δ\bar{ε}^p\frac{3}{2}\frac{\bm{σ^{tr'}}}{σ_{Mises}^{tr}} Δεp=Δεˉp23σMisesσ=Δεˉp23σMisestrσtr
偏应力张量与试应力的偏应力张量方向相同,如下图

ABAQUS材料子程序学习(线性各向同性硬化塑性)_第2张图片

屈服后一致切线刚度矩阵:
应力增量=弹性刚度矩阵×弹性应变增量
d σ = D e ⋅ d ε e \bm{dσ=D_e·dε^e} dσ=Dedεe
弹性应变=总应变-塑性应变增量
d σ = D e ⋅ ( d ε − d ε p ) (6) \bm{dσ=D_e·(dε-dε^p)}\tag{6} dσ=De(dεdεp)(6)
d ε p \bm{dε^p} dεp d ε \bm{dε} dε 表示出来,再代回式(6)就可求出屈服后的DDSDDE(NTENS,NTENS)
一致性条件
{ f ( σ , ε p ˉ ) = 0 f ( σ + d σ , ε p ˉ + d ε p ˉ ) = 0    ⟹    ∂ f ∂ σ ⋅ d σ + ∂ f ∂ ε p ˉ d ε p ˉ = 0 (7) \begin{cases} f(\bm{σ},\bar{ε^p})=0 \\ f(\bm{σ}+d\bm{σ},\bar{ε^p}+d\bar{ε^p})=0 \end{cases} \implies \frac{\partial f}{\partial \bm{σ}}\cdot \bm{dσ}+\frac{\partial f}{\partial \bar{ε^p}} d\bar{ε^p}=0\tag{7} {f(σ,εpˉ)=0f(σ+dσ,εpˉ+dεpˉ)=0σfdσ+εpˉfdεpˉ=0(7)
屈服函数: f ( σ , ε p ˉ ) = σ M i s e s − h ⋅ ε p ˉ f(\bm{σ},\bar{ε^p})=σ_{Mises}-h·\bar{ε^p} f(σ,εpˉ)=σMiseshεpˉ
∂ f ∂ σ = ∂ σ M i s e s ∂ σ ∂ f ∂ ε p ˉ = − h (8) \frac{\partial f}{\partial \bm{σ}} =\frac{\partial σ_{Mises}}{\partial \bm{σ}}\qquad \frac{\partial f}{\partial \bar{ε^p}} =-h\tag{8} σf=σσMisesεpˉf=h(8)
为了方便计算改写为矩阵形式:

用Voigt表记应力, σ \bmσ σ为列向量 [ σ 11 , σ 22 , σ 33 , σ 12 , σ 23 , σ 13 ] T [σ_{11},σ_{22},σ_{33},σ_{12},σ_{23},σ_{13}]^T [σ11,σ22,σ33,σ12,σ23,σ13]T

因此, ∂ f ∂ σ = ∂ σ M i s e s ∂ σ = 3 2 σ M i s e s [ σ 11 ′ , σ 22 ′ , σ 33 ′ , 2 σ 12 ′ , 2 σ 23 ′ , 2 σ 13 ′ ] \frac{\partial f}{\partial \bm{σ}}=\frac{\partial σ_{Mises}}{\partial \bm{σ}}=\frac{3}{2σ_{Mises}}\left[σ'_{11},σ'_{22},σ'_{33}, 2σ'_{12}, 2σ'_{23}, 2σ'_{13}\right] σf=σσMises=2σMises3[σ11,σ22,σ33,2σ12,2σ23,2σ13]为行向量

正交条件: d ε p = d ε p ˉ [ ∂ σ M i s e s ∂ σ ] T (9) \bm{dε^p}=d\bar{ε^p} \left[ \frac{\partial σ_{Mises} }{\partial \bmσ}\right]^T\tag{9} dεp=dεpˉ[σσMises]T(9)
(8)(9)代入(7):
d ε p ˉ = ∂ σ M i s e s ∂ σ ⋅ d σ h = 1 h ∂ σ M i s e s ∂ σ ⋅ D e ⋅ d ε e = 1 h ∂ σ M i s e s ∂ σ ⋅ D e ⋅ ( d ε − d ε p ) = 1 h ∂ σ M i s e s ∂ σ D e ( d ε − d ε p ˉ [ ∂ σ M i s e s ∂ σ ] T ) \begin{gathered} d\bar{ε^p}=\frac{\partial σ_{Mises}}{\partial \bmσ} \cdot\frac {\bm{dσ}}{h}=\frac{1}{h}\frac{\partial σ_{Mises}}{\partial \bm{σ}} \cdot\bm{D_e}\cdot\bm{dε^e}\\ \quad\\ = \frac{1}{h}\frac{\partial σ_{Mises}}{\partial \bm{σ}}\cdot\bm{D_e}\cdot(\bm{dε-dε^p})\\ \quad\\ =\frac{1}{h}\frac{\partial σ_{Mises}}{\partial \bm{σ}} \bm{D_e}({\bm{dε}-d\bar{ε^p}\left[ \frac{\partial σ_{Mises}} {\partial \bmσ}\right]^T}) \end{gathered} dεpˉ=σσMiseshdσ=h1σσMisesDedεe=h1σσMisesDe(dεdεp)=h1σσMisesDe(dεdεpˉ[σσMises]T)
{ h + ∂ σ M i s e s ∂ σ ⋅ D e ⋅ [ ∂ σ M i s e s ∂ σ ] T } d ε p ˉ = ∂ σ M i s e s ∂ σ ⋅ D e ⋅ d ε d ε p ˉ = ∂ σ M i s e s ∂ σ ⋅ D e ⋅ d ε h + ∂ σ M i s e s ∂ σ ⋅ D e ⋅ [ ∂ σ M i s e s ∂ σ ] T d ε p = [ ∂ σ M i s e s ∂ σ ] T ⊗ ∂ σ M i s e s ∂ σ ⋅ D e ⋅ d ε h + ∂ σ M i s e s ∂ σ ⋅ D e ⋅ [ ∂ σ M i s e s ∂ σ ] T \left\{h+\frac{\partial σ_{Mises}}{\partial \bmσ}\cdot \bm{D_e}\cdot\left[\frac{\partial σ_{Mises}}{\partial \bmσ} \right]^T\right\}d\bar{ε^p}=\frac{\partial σ_{Mises}}{\partial \bmσ} \cdot\bm{D_e}\cdot\bm{dε}\\ \quad\\ d\bar{ε^p}=\frac{\frac{\partial σ_{Mises}}{\partial \bmσ} \cdot\bm{D_e}\cdot\bm{dε}}{ h+\frac{\partial σ_{Mises}}{\partial \bmσ}\cdot \bm{D_e}\cdot\left[\frac{\partial σ_{Mises}}{\partial \bmσ} \right]^T}\\ \quad\\ d\bm{ε^p}= \frac{\left[\frac{\partial σ_{Mises}}{\partial \bmσ} \right]^T\otimes\frac{\partial σ_{Mises}}{\partial \bmσ} \cdot\bm{D_e}\cdot\bm{dε}}{ h+\frac{\partial σ_{Mises}}{\partial \bmσ}\cdot \bm{D_e}\cdot\left[\frac{\partial σ_{Mises}}{\partial \bmσ} \right]^T} {h+σσMisesDe[σσMises]T}dεpˉ=σσMisesDedεdεpˉ=h+σσMisesDe[σσMises]TσσMisesDedεdεp=h+σσMisesDe[σσMises]T[σσMises]TσσMisesDedε
代入(6):
d σ = D e ⋅ ( d ε − d ε p ) = { D e − [ ∂ σ M i s e s ∂ σ ] T ⊗ ∂ σ M i s e s ∂ σ ⋅ D e h + ∂ σ M i s e s ∂ σ ⋅ D e ⋅ [ ∂ σ M i s e s ∂ σ ] T } ⋅ d ε \bm{dσ=D_e·(dε-dε^p)}=\left\{ \bm{D_e}-\frac{\left[\frac{\partial σ_{Mises}}{\partial \bmσ} \right]^T\otimes\frac{\partial σ_{Mises}}{\partial \bmσ}\cdot\bm{D_e}}{ h+\frac{\partial σ_{Mises}}{\partial \bmσ}\cdot \bm{D_e}\cdot\left[\frac{\partial σ_{Mises}}{\partial \bmσ} \right]^T}\right\} \cdot\bm{dε} dσ=De(dεdεp)={Deh+σσMisesDe[σσMises]T[σσMises]TσσMisesDe}dε
d σ = D e q ⋅ d ε (11) \bm{dσ}=\bm{D_{eq}}\cdot\bm{d\varepsilon}\tag{11} dσ=Deqdε(11)
D e ⋅ [ ∂ σ M i s e s ∂ σ ] T = 3 G 2 σ M i s e s [ 2 G + λ λ λ 0 0 0 λ 2 G + λ λ 0 0 0 λ λ 2 G + λ 0 0 0 0 0 0 G 0 0 0 0 0 0 G 0 0 0 0 0 0 G ] ⋅ { σ 11 ′ σ 22 ′ σ 33 ′ 2 σ 12 ′ 2 σ 23 ′ 2 σ 13 ′ } = 3 G σ M i s e s { σ 11 ′ σ 22 ′ σ 33 ′ σ 12 ′ σ 23 ′ σ 13 ′ } \bm{D_e}\cdot\left[\frac{\partial σ_{Mises}}{\partial \bm{σ}}\right]^T= \frac{3G}{2σ_{Mises}}\left [\begin{matrix} 2G+λ&λ&λ&0&0&0 \\ λ&2G+λ&λ&0&0&0 \\ λ&λ& 2G+λ&0&0&0 \\ 0&0&0& G&0&0 \\ 0&0&0&0& G&0 \\ 0&0&0&0&0 &G \end{matrix} \right]\cdot\left\{\begin{matrix} σ'_{11}\\σ'_{22}\\σ'_{33}\\2σ'_{12}\\ 2σ'_{23}\\2σ'_{13}\end{matrix} \right\} =\frac{3G}{σ_{Mises}}\left\{\begin{matrix} σ'_{11}\\σ'_{22}\\σ'_{33}\\σ'_{12}\\ σ'_{23}\\σ'_{13}\end{matrix} \right\} De[σσMises]T=2σMises3G2G+λλλ000λ2G+λλ000λλ2G+λ000000G000000G000000Gσ11σ22σ332σ122σ232σ13=σMises3Gσ11σ22σ33σ12σ23σ13
[ ∂ σ M i s e s ∂ σ ] ⋅ D e ⋅ [ ∂ σ M i s e s ∂ σ ] T = 9 G 2 σ M i s e s 2 { σ 11 ′ , σ 22 ′ , σ 33 ′ , 2 σ 12 ′ , 2 σ 23 ′ , 2 σ 13 ′ } { σ 11 ′ σ 22 ′ σ 33 ′ σ 12 ′ σ 23 ′ σ 13 ′ } = 9 G 2 σ M i s e s 2 2 3 [ 3 2 ( σ 11 ′ 2 + σ 22 ′ 2 + σ 33 ′ 2 + 2 σ 12 ′ 2 + 2 σ 23 ′ 2 + 2 σ 13 ′ 2 ) ] = 3 G \left[\frac{\partial σ_{Mises}}{\partial \bm{σ}}\right]\cdot\bm{D_e}\cdot\left[\frac{\partial σ_{Mises}}{\partial \bm{σ}}\right]^T =\frac{9G^2}{σ_{Mises}^2}\left\{ σ'_{11},σ'_{22},σ'_{33},2σ'_{12},2 σ'_{23},2σ'_{13} \right\}\left\{\begin{matrix} σ'_{11}\\σ'_{22}\\σ'_{33}\\σ'_{12}\\ σ'_{23}\\σ'_{13}\end{matrix} \right\}\\ \quad =\frac{9G}{2σ_{Mises}^2}\frac{2}{3}\left[\frac{3}{2}\left( {σ'_{11}}^2+{σ'_{22}}^2+{σ'_{33}}^2+2{σ'_{12}}^2+2{σ'_{23}}^2+2{σ'_{13}}^2 \right)\right]=3G [σσMises]De[σσMises]T=σMises29G2{σ11,σ22,σ33,2σ12,2σ23,2σ13}σ11σ22σ33σ12σ23σ13=2σMises29G32[23(σ112+σ222+σ332+2σ122+2σ232+2σ132)]=3G
因此:
[ ∂ σ M i s e s ∂ σ ] ⋅ D e ⋅ [ ∂ σ M i s e s ∂ σ ] T = 3 G (12) \left[\frac{\partial σ_{Mises}}{\partial \bm{σ}}\right]\cdot\bm{D_e}\cdot\left[\frac{\partial σ_{Mises}}{\partial \bm{σ}}\right]^T =3G\tag{12} [σσMises]De[σσMises]T=3G(12)
[ ∂ σ M i s e s ∂ σ ] T ⊗ ∂ σ M i s e s ∂ σ = 9 4 σ M i s e s 2 { σ 11 ′ ⋅ σ 11 ′ σ 11 ′ ⋅ σ 22 ′ σ 11 ′ ⋅ σ 33 ′ σ 11 ′ ⋅ σ 12 ′ σ 11 ′ ⋅ σ 23 ′ σ 11 ′ ⋅ σ 13 ′ σ 22 ′ ⋅ σ 11 ′ σ 22 ′ ⋅ σ 22 ′ σ 22 ′ ⋅ σ 33 ′ σ 22 ′ ⋅ σ 12 ′ σ 22 ′ ⋅ σ 23 ′ σ 22 ′ ⋅ σ 13 ′ σ 33 ′ ⋅ σ 11 ′ σ 33 ′ ⋅ σ 22 ′ σ 33 ′ ⋅ σ 33 ′ σ 33 ′ ⋅ σ 12 ′ σ 33 ′ ⋅ σ 23 ′ σ 33 ′ ⋅ σ 13 ′ σ 12 ′ ⋅ σ 11 ′ σ 12 ′ ⋅ σ 22 ′ σ 12 ′ ⋅ σ 33 ′ σ 12 ′ ⋅ σ 12 ′ σ 12 ′ ⋅ σ 23 ′ σ 12 ′ ⋅ σ 13 ′ σ 23 ′ ⋅ σ 11 ′ σ 23 ′ ⋅ σ 22 ′ σ 23 ′ ⋅ σ 33 ′ σ 23 ′ ⋅ σ 12 ′ σ 23 ′ ⋅ σ 23 ′ σ 23 ′ ⋅ σ 13 ′ σ 13 ′ ⋅ σ 11 ′ σ 13 ′ ⋅ σ 22 ′ σ 13 ′ ⋅ σ 33 ′ σ 13 ′ ⋅ σ 12 ′ σ 13 ′ ⋅ σ 23 ′ σ 13 ′ ⋅ σ 13 ′ } (13) \begin{array}{l} \large{\left[\frac{\partial σ_{Mises}}{\partial \bmσ} \right]^T\otimes\frac{\partial σ_{Mises}}{\partial \bmσ}=}\\ \quad\\ \frac{9}{4σ_{Mises}^2}\left\{\begin{matrix} σ'_{11}\cdotσ'_{11}&σ'_{11}\cdotσ'_{22}&σ'_{11}\cdotσ'_{33}&σ'_{11}\cdotσ'_{12}&σ'_{11}\cdotσ'_{23}&σ'_{11}\cdotσ'_{13}\\ σ'_{22}\cdotσ'_{11}&σ'_{22}\cdotσ'_{22}&σ'_{22}\cdotσ'_{33}&σ'_{22}\cdotσ'_{12}&σ'_{22}\cdotσ'_{23}&σ'_{22}\cdotσ'_{13}\\ σ'_{33}\cdotσ'_{11}&σ'_{33}\cdotσ'_{22}&σ'_{33}\cdotσ'_{33}&σ'_{33}\cdotσ'_{12}&σ'_{33}\cdotσ'_{23}&σ'_{33}\cdotσ'_{13}\\ σ'_{12}\cdotσ'_{11}&σ'_{12}\cdotσ'_{22}&σ'_{12}\cdotσ'_{33}&σ'_{12}\cdotσ'_{12}&σ'_{12}\cdotσ'_{23}&σ'_{12}\cdotσ'_{13}\\ σ'_{23}\cdotσ'_{11}&σ'_{23}\cdotσ'_{22}&σ'_{23}\cdotσ'_{33}&σ'_{23}\cdotσ'_{12}&σ'_{23}\cdotσ'_{23}&σ'_{23}\cdotσ'_{13}\\ σ'_{13}\cdotσ'_{11}&σ'_{13}\cdotσ'_{22}&σ'_{13}\cdotσ'_{33}&σ'_{13}\cdotσ'_{12}&σ'_{13}\cdotσ'_{23}&σ'_{13}\cdotσ'_{13} \end{matrix} \right\}\tag{13} \end{array} [σσMises]TσσMises=4σMises29σ11σ11σ22σ11σ33σ11σ12σ11σ23σ11σ13σ11σ11σ22σ22σ22σ33σ22σ12σ22σ23σ22σ13σ22σ11σ33σ22σ33σ33σ33σ12σ33σ23σ33σ13σ33σ11σ12σ22σ12σ33σ12σ12σ12σ23σ12σ13σ12σ11σ23σ22σ23σ33σ23σ12σ23σ23σ23σ13σ23σ11σ13σ22σ13σ33σ13σ12σ13σ23σ13σ13σ13(13)
(12)(13)代入(11):
D e q = { D e − [ ∂ σ M i s e s ∂ σ ] T ⊗ ∂ σ M i s e s ∂ σ ⋅ D e h + ∂ σ M i s e s ∂ σ ⋅ D e ⋅ [ ∂ σ M i s e s ∂ σ ] T } \bm{D_{eq}}=\left\{ \bm{D_{e}}-\frac{\left[\frac{\partial σ_{Mises}}{\partial \bmσ} \right]^T\otimes\frac{\partial σ_{Mises}}{\partial \bmσ}\cdot\bm{D_{e}}}{ h+\frac{\partial σ_{Mises}}{\partial \bmσ}\cdot \bm{D_e}\cdot\left[\frac{\partial σ_{Mises}}{\partial \bmσ} \right]^T}\right\} Deq={Deh+σσMisesDe[σσMises]T[σσMises]TσσMisesDe}
[ ∂ σ M i s e s ∂ σ ] T ⊗ ∂ σ M i s e s ∂ σ ⋅ D e h + ∂ σ M i s e s ∂ σ ⋅ D e ⋅ [ ∂ σ M i s e s ∂ σ ] T = 9 4 σ M i s e s 2 ( h + 3 G ) [ σ 11 ′ ⋅ σ 11 ′ σ 11 ′ ⋅ σ 22 ′ σ 11 ′ ⋅ σ 33 ′ σ 11 ′ ⋅ σ 12 ′ σ 11 ′ ⋅ σ 23 ′ σ 11 ′ ⋅ σ 13 ′ σ 22 ′ ⋅ σ 11 ′ σ 22 ′ ⋅ σ 22 ′ σ 22 ′ ⋅ σ 33 ′ σ 22 ′ ⋅ σ 12 ′ σ 22 ′ ⋅ σ 23 ′ σ 22 ′ ⋅ σ 13 ′ σ 33 ′ ⋅ σ 11 ′ σ 33 ′ ⋅ σ 22 ′ σ 33 ′ ⋅ σ 33 ′ σ 33 ′ ⋅ σ 12 ′ σ 33 ′ ⋅ σ 23 ′ σ 33 ′ ⋅ σ 13 ′ σ 12 ′ ⋅ σ 11 ′ σ 12 ′ ⋅ σ 22 ′ σ 12 ′ ⋅ σ 33 ′ σ 12 ′ ⋅ σ 12 ′ σ 12 ′ ⋅ σ 23 ′ σ 12 ′ ⋅ σ 13 ′ σ 23 ′ ⋅ σ 11 ′ σ 23 ′ ⋅ σ 22 ′ σ 23 ′ ⋅ σ 33 ′ σ 23 ′ ⋅ σ 12 ′ σ 23 ′ ⋅ σ 23 ′ σ 23 ′ ⋅ σ 13 ′ σ 13 ′ ⋅ σ 11 ′ σ 13 ′ ⋅ σ 22 ′ σ 13 ′ ⋅ σ 33 ′ σ 13 ′ ⋅ σ 12 ′ σ 13 ′ ⋅ σ 23 ′ σ 13 ′ ⋅ σ 13 ′ ] ⋅ [ 2 G + λ λ λ 0 0 0 λ 2 G + λ λ 0 0 0 λ λ 2 G + λ 0 0 0 0 0 0 G 0 0 0 0 0 0 G 0 0 0 0 0 0 G ] = 9 G 4 σ M i s e s 2 ( h + 3 G ) [ 2 σ 11 ′ ⋅ σ 11 ′ 2 σ 11 ′ ⋅ σ 22 ′ 2 σ 11 ′ ⋅ σ 33 ′ σ 11 ′ ⋅ σ 12 ′ σ 11 ′ ⋅ σ 23 ′ σ 11 ′ ⋅ σ 13 ′ 2 σ 22 ′ ⋅ σ 11 ′ 2 σ 22 ′ ⋅ σ 22 ′ 2 σ 22 ′ ⋅ σ 33 ′ σ 22 ′ ⋅ σ 12 ′ σ 22 ′ ⋅ σ 23 ′ σ 22 ′ ⋅ σ 13 ′ 2 σ 33 ′ ⋅ σ 11 ′ 2 σ 33 ′ ⋅ σ 22 ′ 2 σ 33 ′ ⋅ σ 33 ′ σ 33 ′ ⋅ σ 12 ′ σ 33 ′ ⋅ σ 23 ′ σ 33 ′ ⋅ σ 13 ′ 2 σ 12 ′ ⋅ σ 11 ′ 2 σ 12 ′ ⋅ σ 22 ′ 2 σ 12 ′ ⋅ σ 33 ′ σ 12 ′ ⋅ σ 12 ′ σ 12 ′ ⋅ σ 23 ′ σ 12 ′ ⋅ σ 13 ′ 2 σ 23 ′ ⋅ σ 11 ′ 2 σ 23 ′ ⋅ σ 22 ′ 2 σ 23 ′ ⋅ σ 33 ′ σ 23 ′ ⋅ σ 12 ′ σ 23 ′ ⋅ σ 23 ′ σ 23 ′ ⋅ σ 13 ′ 2 σ 13 ′ ⋅ σ 11 ′ 2 σ 13 ′ ⋅ σ 22 ′ 2 σ 13 ′ ⋅ σ 33 ′ σ 13 ′ ⋅ σ 12 ′ σ 13 ′ ⋅ σ 23 ′ σ 13 ′ ⋅ σ 13 ′ ] \begin{array}{l} \large {\frac{\left[\frac{\partial σ_{Mises}}{\partial \bmσ} \right]^T\otimes\frac{\partial σ_{Mises}}{\partial \bmσ}\cdot\bm{D_{e}}}{ h+\frac{\partial σ_{Mises}}{\partial \bmσ}\cdot \bm{D_e}\cdot\left[\frac{\partial σ_{Mises}}{\partial \bmσ} \right]^T}}=\frac{9}{4σ_{Mises}^2(h+3G)}\\ \quad\\ \small{ \left[\begin{matrix} σ'_{11}\cdotσ'_{11}&σ'_{11}\cdotσ'_{22}&σ'_{11}\cdotσ'_{33}&σ'_{11}\cdotσ'_{12}&σ'_{11}\cdotσ'_{23}&σ'_{11}\cdotσ'_{13}\\ σ'_{22}\cdotσ'_{11}&σ'_{22}\cdotσ'_{22}&σ'_{22}\cdotσ'_{33}&σ'_{22}\cdotσ'_{12}&σ'_{22}\cdotσ'_{23}&σ'_{22}\cdotσ'_{13}\\ σ'_{33}\cdotσ'_{11}&σ'_{33}\cdotσ'_{22}&σ'_{33}\cdotσ'_{33}&σ'_{33}\cdotσ'_{12}&σ'_{33}\cdotσ'_{23}&σ'_{33}\cdotσ'_{13}\\ σ'_{12}\cdotσ'_{11}&σ'_{12}\cdotσ'_{22}&σ'_{12}\cdotσ'_{33}&σ'_{12}\cdotσ'_{12}&σ'_{12}\cdotσ'_{23}&σ'_{12}\cdotσ'_{13}\\ σ'_{23}\cdotσ'_{11}&σ'_{23}\cdotσ'_{22}&σ'_{23}\cdotσ'_{33}&σ'_{23}\cdotσ'_{12}&σ'_{23}\cdotσ'_{23}&σ'_{23}\cdotσ'_{13}\\ σ'_{13}\cdotσ'_{11}&σ'_{13}\cdotσ'_{22}&σ'_{13}\cdotσ'_{33}&σ'_{13}\cdotσ'_{12}&σ'_{13}\cdotσ'_{23}&σ'_{13}\cdotσ'_{13} \end{matrix} \right]\cdot\left [\begin{matrix} 2G+λ&λ&λ&0&0&0 \\ λ&2G+λ&λ&0&0&0 \\ λ&λ& 2G+λ&0&0&0 \\ 0&0&0& G&0&0 \\ 0&0&0&0& G&0 \\ 0&0&0&0&0 &G \end{matrix} \right]}\\ \quad\\ =\frac{9G}{4σ_{Mises}^2(h+3G)} \small{ \left[\begin{matrix} 2σ'_{11}\cdotσ'_{11}&2σ'_{11}\cdotσ'_{22}&2σ'_{11}\cdotσ'_{33}&σ'_{11}\cdotσ'_{12}&σ'_{11}\cdotσ'_{23}&σ'_{11}\cdotσ'_{13}\\ 2σ'_{22}\cdotσ'_{11}&2σ'_{22}\cdotσ'_{22}&2σ'_{22}\cdotσ'_{33}&σ'_{22}\cdotσ'_{12}&σ'_{22}\cdotσ'_{23}&σ'_{22}\cdotσ'_{13}\\ 2σ'_{33}\cdotσ'_{11}&2σ'_{33}\cdotσ'_{22}&2σ'_{33}\cdotσ'_{33}&σ'_{33}\cdotσ'_{12}&σ'_{33}\cdotσ'_{23}&σ'_{33}\cdotσ'_{13}\\ 2σ'_{12}\cdotσ'_{11}&2σ'_{12}\cdotσ'_{22}&2σ'_{12}\cdotσ'_{33}&σ'_{12}\cdotσ'_{12}&σ'_{12}\cdotσ'_{23}&σ'_{12}\cdotσ'_{13}\\ 2σ'_{23}\cdotσ'_{11}&2σ'_{23}\cdotσ'_{22}&2σ'_{23}\cdotσ'_{33}&σ'_{23}\cdotσ'_{12}&σ'_{23}\cdotσ'_{23}&σ'_{23}\cdotσ'_{13}\\ 2σ'_{13}\cdotσ'_{11}&2σ'_{13}\cdotσ'_{22}&2σ'_{13}\cdotσ'_{33}&σ'_{13}\cdotσ'_{12}&σ'_{13}\cdotσ'_{23}&σ'_{13}\cdotσ'_{13} \end{matrix} \right]} \end{array} h+σσMisesDe[σσMises]T[σσMises]TσσMisesDe=4σMises2(h+3G)9σ11σ11σ22σ11σ33σ11σ12σ11σ23σ11σ13σ11σ11σ22σ22σ22σ33σ22σ12σ22σ23σ22σ13σ22σ11σ33σ22σ33σ33σ33σ12σ33σ23σ33σ13σ33σ11σ12σ22σ12σ33σ12σ12σ12σ23σ12σ13σ12σ11σ23σ22σ23σ33σ23σ12σ23σ23σ23σ13σ23σ11σ13σ22σ13σ33σ13σ12σ13σ23σ13σ13σ132G+λλλ000λ2G+λλ000λλ2G+λ000000G000000G000000G=4σMises2(h+3G)9G2σ11σ112σ22σ112σ33σ112σ12σ112σ23σ112σ13σ112σ11σ222σ22σ222σ33σ222σ12σ222σ23σ222σ13σ222σ11σ332σ22σ332σ33σ332σ12σ332σ23σ332σ13σ33σ11σ12σ22σ12σ33σ12σ12σ12σ23σ12σ13σ12σ11σ23σ22σ23σ33σ23σ12σ23σ23σ23σ13σ23σ11σ13σ22σ13σ33σ13σ12σ13σ23σ13σ13σ13
屈服后的DDSDDE(NTENS,NTENS)
D D S D D E ( N T E N S , N T E N S ) = D e q DDSDDE(NTENS,NTENS)=\bm{D_{eq}} DDSDDE(NTENS,NTENS)=Deq

umat子程序

      SUBROUTINE UMAT(STRESS,STATEV,DDSDDE,SSE,SPD,SCD,
     1 RPL,DDSDDT,DRPLDE,DRPLDT,
     2 STRAN,DSTRAN,TIME,DTIME,TEMP,DTEMP,PREDEF,DPRED,CMNAME,
     3 NDI,NSHR,NTENS,NSTATV,PROPS,NPROPS,COORDS,DROT,PNEWDT,
     4 CELENT,DFGRD0,DFGRD1,NOEL,NPT,LAYER,KSPT,JSTEP,KINC)
C
      INCLUDE 'ABA_PARAM.INC'
C
      CHARACTER*80 CMNAME
      DIMENSION STRESS(NTENS),STATEV(NSTATV),
     1 DDSDDE(NTENS,NTENS),DDSDDT(NTENS),DRPLDE(NTENS),
     2 STRAN(NTENS),DSTRAN(NTENS),TIME(2),PREDEF(1),DPRED(1),
     3 PROPS(NPROPS),COORDS(3),DROT(3,3),DFGRD0(3,3),DFGRD1(3,3),
     4 JSTEP(4),
     5 STRESS_TR(NTENS),DSTRAN_P(NTENS),DSTRAN_E(NTENS),STRESS_D(NTENS),
     6 S_S(NTENS,NTENS)

      EE=PROPS(1)  !modulus
      EMU=PROPS(2)   !Possion's ritio
      EH=PROPS(3

你可能感兴趣的:(umat,abaqus,学习,线性代数,矩阵)