Spring-boot整合Kafka

生产者

说明

KafkaTemplate封装了一个生成器,并提供了方便的方法来发送数据到kafka主题。 提供了异步和同步方法,异步方法返回一个Future。

其构造方法有:

    ListenableFuture> sendDefault(V data);

    ListenableFuture> sendDefault(K key, V data);

    ListenableFuture> sendDefault(int partition, K key, V data);

    ListenableFuture> send(String topic, V data);

    ListenableFuture> send(String topic, K key, V data);

    ListenableFuture> send(String topic, int partition, V data);

    ListenableFuture> send(String topic, int partition, K key, V data);

    ListenableFuture> send(Message message);

前3个方法需要向Temple提供默认主题

配置

使用Producer配置类

@Configuration
@EnableKafka
public class ProducerConfig {

    @Value("${kafka.producer.servers}")
    private String servers;

    @Value("${kafka.producer.retries}")
    private int retries;

    @Value("${kafka.producer.batch.size}")
    private int batchSize;

    @Value("${kafka.producer.linger}")
    private int linger;

    @Value("${kafka.producer.buffer.memory}")
    private int bufferMemory;

    public Map producerConfigs() {
        Map props = new HashMap<>();
        props.put(Config.BOOTSTRAP_SERVERS_CONFIG, servers);
        props.put(Config.RETRIES_CONFIG, retries);
        props.put(Config.BATCH_SIZE_CONFIG, batchSize);
        props.put(Config.LINGER_MS_CONFIG, linger);
        props.put(Config.BUFFER_MEMORY_CONFIG, bufferMemory);
        props.put(Config.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class);
        props.put(Config.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class);
        props.put(Config.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class);
        return props;
    }

    public ProducerFactory producerFactory() {
        return new DefaultKafkaProducerFactory<>(producerConfigs());
    }

    @Bean
    public KafkaTemplate kafkaTemplate() {
        return new KafkaTemplate(producerFactory());
    }
}

示例

@RestController
@RequestMapping("/kafka/producer")
public class ProducerController {
    private static Logger logger = LoggerFactory.getLogger(ProducerController.class);

    @Value("${topic.name}")
    private String topicName;

    @Autowired
    private KafkaTemplate kafkaTemplate;

    @RequestMapping("/send")
    public Object sendKafka(String message) {
        try {
            logger.info("send kafka message: {}", message);
            kafkaTemplate.send(topicName, UUID.randomUUID().toString(), message);
            return "success";
        } catch (Exception e) {
            logger.error("发送kafka失败", e);
            return "fail";
        }
    }
}

消费者

说明

可以通过配置MessageListenerContainer并提供MessageListener或通过使用@KafkaListener注释来接收消息。
MessageListenerContainer有两个实现:

  • KafkaMessageListenerContainer:从单个线程上的所有主题/分区接收所有消息
  • ConcurrentMessageListenerContainer:委托给1个或多个KafkaMessageListenerContainer以提供多线程消费。通过container.setConcurrency(3),来设置多个线程

配置

使用Consumer配置类

@Configuration
@EnableKafka
public class ConsumerConfig {

    @Value("${kafka.consumer.servers}")
    private String servers;

    @Value("${kafka.consumer.enable.auto.commit}")
    private boolean enableAutoCommit;

    @Value("${kafka.consumer.session.timeout}")
    private String sessionTimeout;

    @Value("${kafka.consumer.auto.commit.interval}")
    private String autoCommitInterval;

    @Value("${kafka.consumer.group.id}")
    private String groupId;

    @Value("${kafka.consumer.topic}")
    private String topic;

    @Value("${kafka.consumer.auto.offset.reset}")
    private String autoOffsetReset;

    @Value("${kafka.consumer.concurrency}")
    private int concurrency;

    /**
     * KafkaMessageListenerContainer: 从单个线程上的所有主题/分区接收所有消息

    @Bean(initMethod = "doStart")
    public KafkaMessageListenerContainer kafkaMessageListenerContainer() {
        KafkaMessageListenerContainer container = new KafkaMessageListenerContainer<>(consumerFactory(), containerProperties());
        return container;
    }

    */

    /**
     * ConcurrentMessageListenerContainer:
     * 委托给1个或多个KafkaMessageListenerContainer以提供多线程消费。
     * 通过container.setConcurrency(3),来设置多个线程
     */
    @Bean(initMethod = "doStart")
    public ConcurrentMessageListenerContainer concurrentMessageListenerContainer() {
        ConcurrentMessageListenerContainer container = new ConcurrentMessageListenerContainer<>(consumerFactory(), containerProperties());
        container.setConcurrency(concurrency);
        return container;

    }

    public ConsumerFactory consumerFactory() {
        return new DefaultKafkaConsumerFactory<>(consumerConfigs());
    }

    public ContainerProperties containerProperties() {
        ContainerProperties containerProperties = new ContainerProperties(topic);
        containerProperties.setMessageListener(messageListener());
        return containerProperties;
    }

    public Map consumerConfigs() {
        Map propsMap = new HashMap<>();
        propsMap.put(Config.BOOTSTRAP_SERVERS_CONFIG, servers);
        propsMap.put(Config.ENABLE_AUTO_COMMIT_CONFIG, enableAutoCommit);
        propsMap.put(Config.AUTO_COMMIT_INTERVAL_MS_CONFIG, autoCommitInterval);
        propsMap.put(Config.SESSION_TIMEOUT_MS_CONFIG, sessionTimeout);
        propsMap.put(Config.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class);
        propsMap.put(Config.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class);
        propsMap.put(Config.GROUP_ID_CONFIG, groupId);
        propsMap.put(Config.AUTO_OFFSET_RESET_CONFIG, autoOffsetReset);
        return propsMap;
    }

    public MessageListener messageListener() {
        return new CustomMessageListener();
    }
}

消息接收

Java实现

直接使用kafka0.10 client去收发消息

@Test
public void receive(){
    Properties props = new Properties();
    props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, broker);
    props.put(ConsumerConfig.GROUP_ID_CONFIG, groupId);
    props.put(ConsumerConfig.CLIENT_ID_CONFIG, clientId);
    props.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, "true");
    props.put(ConsumerConfig.AUTO_COMMIT_INTERVAL_MS_CONFIG, "1000");
    props.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest");
    props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
    props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
    KafkaConsumer consumer = new KafkaConsumer<>(props);
    try{
        consumer.subscribe(Arrays.asList(topic));
        while (true) {
            ConsumerRecords records = consumer.poll(10000);
            records.forEach(record -> {
                System.out.printf("client : %s , topic: %s , partition: %d , offset = %d, key = %s, value = %s%n", clientId, record.topic(),
                        record.partition(), record.offset(), record.key(), record.value());
            });
        }
    }catch (Exception e){
        e.printStackTrace();
    }finally {
        consumer.close();
    }
}
使用MessageListener接口

继承MessageListener接口

public class CustomMessageListener implements MessageListener {
    private static Logger logger = LoggerFactory.getLogger(CustomMessageListener.class);

    @Override
    public void onMessage(ConsumerRecord data) {
        logger.info("received key: {}, value: {}", data.key(), data.value());
    }

  //或包含消费者的onMessage方法,以手动提交ofset
}
使用@KafkaListener注解
@KafkaListener(id = "foo", topics = "myTopic")
public void listen(String data) {
     ...
}

@KafkaListener(id = "bar", topicPartitions =
        { @TopicPartition(topic = "topic1", partitions = { "0", "1" }),
          @TopicPartition(topic = "topic2", partitions = "0",
             partitionOffsets = @PartitionOffset(partition = "1", initialOffset = "100"))
        })
public void listen(ConsumerRecord record) {
    ...
}

总结

  • 对于生产者来说,封装KafkaProducer到KafkaTemplate相对简单
  • 对于消费者来说,由于spring是采用注解的形式去标注消息处理方法
    1. 先在KafkaListenerAnnotationBeanPostProcessor中扫描bean,然后注册到KafkaListenerEndpointRegistrar
    2. 而KafkaListenerEndpointRegistrar在afterPropertiesSet的时候去创建MessageListenerContainer
    3. messageListener包含了原始endpoint携带的bean以及method转换成的InvocableHandlerMethod
    4. ConcurrentMessageListenerContainer这个衔接上,根据配置的spring.kafka.listener.concurrency来生成多个并发的KafkaMessageListenerContainer实例
    5. 每个KafkaMessageListenerContainer都自己创建一个ListenerConsumer,然后自己创建一个独立的kafka consumer,每个ListenerConsumer在线程池里头运行,这样来实现并发
    6. 每个ListenerConsumer里头都有一个recordsToProcess队列,从原始的kafka consumer poll出来的记录会放到这个队列里头,
    7. 然后有一个ListenerInvoker线程循环超时等待从recordsToProcess取出记录,然后调用messageListener的onMessage方法(即KafkaListener注解标准的方法)
项目源码

https://github.com/scjqwe/spring-kafka-examples

参考
  • https://docs.spring.io/spring-kafka/docs/1.0.4.RELEASE/reference/html/_reference.html
  • https://segmentfault.com/a/1190000011471181
  • http://www.2bowl.info/apache-kafka%E7%BC%96%E7%A8%8B%E5%85%A5%E9%97%A8%E4%BA%8C-spring%E6%95%B4%E5%90%88kafka/

你可能感兴趣的:(Spring-boot整合Kafka)