“微服务” 被拆分成了四个微服务。前端请求进来时,会被转发到不同的微服务。假如前端接收了 10 W 个请求,每个微服务接收 2.5 W 个请求,假如缓存失效了,每个微服务在访问数据库时加锁,通过锁(synchronzied
或 lock
)来锁住自己的线程资源,从而防止缓存击穿
。
这是一种本地加锁
的方式,在分布式
情况下会带来数据不一致的问题:比如服务 A 获取数据后,更新缓存 key =100,服务 B 不受服务 A 的锁限制,并发去更新缓存 key = 99,最后的结果可能是 99 或 100,但这是一种未知的状态,与期望结果不一致。流程图如下所示:
基于上面本地锁的问题,我们需要一种支持分布式集群环境下的锁:查询 DB 时,只有一个线程能访问,其他线程都需要等待第一个线程释放锁资源后,才能继续执行。
生活中的案例:可以把锁看成房门外的一把锁
,所有并发线程比作人
,他们都想进入房间,房间内只能有一个人进入。当有人进入后,将门反锁,其他人必须等待,直到进去的人出来。
我们来看下分布式锁的基本原理,如下图所示:
我们来分析下上图的分布式锁:
大白话解释:所有请求的线程都去同一个地方“占坑”
,如果有坑位,就执行业务逻辑,没有坑位,就需要其他线程释放“坑位”。这个坑位是所有线程可见的,可以把这个坑位放到 Redis 缓存或者数据库,这篇讲的就是如何用 Redis 做“分布式坑位”
。
Redis 作为一个公共可访问的地方,正好可以作为“占坑”的地方。
用 Redis 实现分布式锁的几种方案,我们都是用 SETNX 命令(设置 key 等于某 value)。只是高阶方案传的参数个数不一样,以及考虑了异常情况。
我们来看下这个命令,SETNX
是set If not exist
的简写。意思就是当 key 不存在时,设置 key 的值,存在时,什么都不做。
在 Redis 命令行中是这样执行的:
set NX
我们可以进到 redis 容器中来试下 SETNX
命令。
先进入容器:
docker exec -it <容器 id> redid-cli
然后执行 SETNX 命令:将 wukong
这个 key 对应的 value 设置成 1111
。
set wukong 1111 NX
返回 OK
,表示设置成功。重复执行该命令,返回 nil
表示设置失败。
我们先用 Redis 的 SETNX 命令来实现最简单的分布式锁。
我们来看下流程图:
多个并发线程都去 Redis 中申请锁,也就是执行 setnx 命令,假设线程 A 执行成功,说明当前线程 A 获得了。
其他线程执行 setnx 命令都会是失败的,所以需要等待线程 A 释放锁。
线程 A 执行完自己的业务后,删除锁。
其他线程继续抢占锁,也就是执行 setnx 命令。因为线程 A 已经删除了锁,所以又有其他线程可以抢占到锁了。
代码示例如下,
Java 中 setnx 命令对应的代码为 setIfAbsent
。
setIfAbsent 方法的第一个参数代表 key,第二个参数代表值。
// 1.先抢占锁
Boolean lock = redisTemplate.opsForValue().setIfAbsent("lock", "123");
if(lock) {
// 2.抢占成功,执行业务
List typeEntityListFromDb = getDataFromDB();
// 3.解锁
redisTemplate.delete("lock");
return typeEntityListFromDb;
} else {
// 4.休眠一段时间
sleep(100);
// 5.抢占失败,等待锁释放
return getTypeEntityListByRedisDistributedLock();
}
一个小问题:那为什么需要休眠一段时间?
因为该程序存在递归调用,可能会导致栈空间溢出。
青铜之所以叫青铜,是因为它是最初级的,肯定会带来很多问题。
设想一种家庭场景:晚上小空一个人开锁进入了房间,打开了电灯,然后突然断电
了,小空想开门出去,但是找不到门锁位置,那小明就进不去了,外面的人也进不来。
从技术的角度看:setnx 占锁成功,业务代码出现异常或者服务器宕机,没有执行删除锁的逻辑,就造成了死锁
。
那如何规避这个风险呢?
设置锁的自动过期时间
,过一段时间后,自动删除锁,这样其他线程就能获取到锁了。
上面提到的青铜方案会有死锁问题,那我们就用上面的规避风险的方案来设计下,也就是我们的白银方案。
还是生活中的例子:小空开锁成功后,给这款智能锁设置了一个沙漏倒计时⏳
,沙漏完后,门锁自动打开。即使房间突然断电,过一段时间后,锁会自动打开,其他人就可以进来了。
和青铜方案不同的地方在于,在占锁成功后,设置锁的过期时间,这两步是分步执行的。如下图所示:
清理 redis key 的代码如下:
// 在 10s 以后,自动清理 lock
redisTemplate.expire("lock", 10, TimeUnit.SECONDS);
完整代码如下:
// 1.先抢占锁
Boolean lock = redisTemplate.opsForValue().setIfAbsent("lock", "123");
if(lock) {
// 2.在 10s 以后,自动清理 lock
redisTemplate.expire("lock", 10, TimeUnit.SECONDS);
// 3.抢占成功,执行业务
List typeEntityListFromDb = getDataFromDB();
// 4.解锁
redisTemplate.delete("lock");
return typeEntityListFromDb;
}
白银方案看似解决了线程异常或服务器宕机造成的锁未释放的问题,但还是存在其他问题:
因为占锁和设置过期时间是分两步执行的,所以如果在这两步之间发生了异常,则锁的过期时间根本就没有设置成功。
所以和青铜方案有一样的问题:锁永远不能过期。
上面的白银方案中,占锁和设置锁过期时间是分步两步执行的,这个时候,我们可以联想到什么:事务的原子性(Atom)。
原子性:多条命令要么都成功执行,要么都不执行。
将两步放在一步中执行:占锁+设置锁过期时间。
Redis 正好支持这种操作:然后可以通过如下命令查看 key 的变化
# 设置某个 key 的值并设置多少毫秒或秒 过期。
set PX <多少毫秒> NX
或
set EX <多少秒> NX
然后可以通过如下命令查看 key 的变化:
ttl
下面演示下如何设置 key 并设置过期时间。注意:执行命令之前需要先删除 key,可以通过客户端或命令删除。
# 设置 key=wukong,value=1111,过期时间=5000ms
set wukong 1111 PX 5000 NX
# 查看 key 的状态
ttl wukong
执行结果如下图所示:每运行一次 ttl 命令,就可以看到 wukong 的过期时间就会减少。最后会变为 -2(已过期)。
黄金方案和白银方案的不同之处:获取锁的时候,也需要设置锁的过期时间,这是一个原子操作,要么都成功执行,要么都不执行。如下图所示:
设置 lock
的值等于 123
,过期时间为 10 秒。如果 10
秒 以后,lock 还存在,则清理 lock。
setIfAbsent("lock", "123", 10, TimeUnit.SECONDS);
我们还是举生活中的例子来看下黄金方案的缺陷。
用户 A 先抢占到了锁,并设置了这个锁 10 秒以后自动开锁,锁的编号为 123
。
10 秒以后,A 还在执行任务,此时锁被自动打开了。
用户 B 看到房间的锁打开了,于是抢占到了锁,设置锁的编号为 123
,并设置了过期时间 10 秒
。
因房间内只允许一个用户执行任务,所以用户 A 和 用户 B 执行任务产生了冲突
。
用户 A 在 15 s
后,完成了任务,此时 用户 B 还在执行任务。
用户 A 主动打开了编号为 123
的锁。
用户 B 还在执行任务,发现锁已经被打开了。
用户 B 非常生气:我还没执行完任务呢,锁怎么开了?
用户 B 的锁被 A 主动打开后,A 离开房间,B 还在执行任务。
用户 C 抢占到锁,C 开始执行任务。
因房间内只允许一个用户执行任务,所以用户 B 和 用户 C 执行任务产生了冲突。
从上面的案例中我们可以知道,因为用户 A 处理任务所需要的时间大于锁自动清理(开锁)的时间,所以在自动开锁后,又有其他用户抢占到了锁。当用户 A 完成任务后,会把其他用户抢占到的锁给主动打开。
这里为什么会打开别人的锁?因为锁的编号都叫做 “123”
,用户 A 只认锁编号,看见编号为 “123”
的锁就开,结果把用户 B 的锁打开了,此时用户 B 还未执行完任务,当然生气了。
上面的黄金方案的缺陷也很好解决,给每个锁设置不同的编号不就好了~
B 抢占的锁是蓝色的,和 A 抢占到绿色锁不一样。这样就不会被 A 打开了。
与黄金方案的不同之处:
设置锁的过期时间时,还需要设置唯一编号。
主动删除锁的时候,需要判断锁的编号是否和设置的一致,如果一致,则认为是自己设置的锁,可以进行主动删除。
// 1.生成唯一 id
String uuid = UUID.randomUUID().toString();
// 2. 抢占锁
Boolean lock = redisTemplate.opsForValue().setIfAbsent("lock", uuid, 10, TimeUnit.SECONDS);
if(lock) {
System.out.println("抢占成功:" + uuid);
// 3.抢占成功,执行业务
List typeEntityListFromDb = getDataFromDB();
// 4.获取当前锁的值
String lockValue = redisTemplate.opsForValue().get("lock");
// 5.如果锁的值和设置的值相等,则清理自己的锁
if(uuid.equals(lockValue)) {
System.out.println("清理锁:" + lockValue);
redisTemplate.delete("lock");
}
return typeEntityListFromDb;
} else {
System.out.println("抢占失败,等待锁释放");
// 4.休眠一段时间
sleep(100);
// 5.抢占失败,等待锁释放
return getTypeEntityListByRedisDistributedLock();
}
生成随机唯一 id,给锁加上唯一值。
抢占锁,并设置过期时间为 10 s,且锁具有随机唯一 id。
抢占成功,执行业务。
4.执行完业务后,获取当前锁的值。
5.如果锁的值和设置的值相等,则清理自己的锁。
上面的方案看似很完美,但还是存在问题:第 4 步和第 5 步并不是原子性的。
时刻:0s。线程 A 抢占到了锁。
时刻:9.5s。线程 A 向 Redis 查询当前 key 的值。
时刻:10s。锁自动过期。
时刻:11s。线程 B 抢占到锁。
时刻:12s。线程 A 在查询途中耗时长,终于拿多锁的值。
时刻:13s。线程 A 还是拿自己设置的锁的值和返回的值进行比较,值是相等的,清理锁,但是这个锁其实是线程 B 抢占的锁。
那如何规避这个风险呢?钻石方案登场。
上面的线程 A 查询锁和删除锁的逻辑不是原子性
的,所以将查询锁和删除锁这两步作为原子指令操作就可以了。
如下图所示,红色圈出来的部分是钻石方案的不同之处。用脚本进行删除,达到原子操作。
那如何用脚本进行删除呢?
我们先来看一下这段 Redis 专属脚本:
if redis.call("get",KEYS[1]) == ARGV[1]
then
return redis.call("del",KEYS[1])
else
return 0
end
这段脚本和铂金方案的获取key,删除key的方式很像。先获取 KEYS[1] 的 value,判断 KEYS[1] 的 value 是否和 ARGV[1] 的值相等,如果相等,则删除 KEYS[1]。
那么这段脚本怎么在 Java 项目中执行呢?
分两步:先定义脚本;用 redisTemplate.execute 方法执行脚本。
// 脚本解锁
String script = "if redis.call('get',KEYS[1]) == ARGV[1] then return redis.call('del',KEYS[1]) else return 0 end";
redisTemplate.execute(new DefaultRedisScript(script, Long.class), Arrays.asList("lock"), uuid);
上面的代码中,KEYS[1] 对应“lock”
,ARGV[1] 对应 “uuid”
,含义就是如果 lock 的 value 等于 uuid 则删除 lock。
而这段 Redis 脚本是由 Redis 内嵌的 Lua 环境执行的,所以又称作 Lua 脚本。
从上面几种方案的不断演进的过程中,知道了系统中哪些地方可能存在异常情况,以及该如何更好地进行处理。
举一反三,这种不断演进的思维模式也可以运用到其他技术中。
下面总结下上面五种方案的缺陷和改进之处。
青铜方案:
缺陷:业务代码出现异常或者服务器宕机,没有执行主动删除锁的逻辑,就造成了死锁。
改进:设置锁的自动过期时间,过一段时间后,自动删除锁,这样其他线程就能获取到锁了。
白银方案:
缺陷:占锁和设置锁过期时间是分步两步执行的,不是原子操作。
改进:占锁和设置锁过期时间保证原子操作。
黄金方案:
缺陷:主动删除锁时,因锁的值都是相同的,将其他客户端占用的锁删除了。
改进:每次占用的锁,随机设为较大的值,主动删除锁时,比较锁的值和自己设置的值是否相等。
铂金方案:
缺陷:获取锁、比较锁的值、删除锁,这三步是非原子性的。中途又可能锁自动过期了,又被其他客户端抢占了锁,导致删锁时把其他客户端占用的锁删了。
改进:使用 Lua 脚本进行获取锁、比较锁、删除锁的原子操作。
钻石方案:
缺陷:非专业的分布式锁方案。
改进:Redission 分布式锁。