C++强制类型转换

C++ 类型转换(C风格的强制转换):

在C++基本的数据类型中,可以分为四类:整型,浮点型,字符型,布尔型。其中数值型包括 整型与浮点型;字符型即为char。

(1)将浮点型数据赋值给整型变量时,舍弃其小数部分。

(2)将整型数据赋值给浮点型变量时,数值不变,但是以指数形式存储。

(3)将double型数据赋值给float型变量时,注意数值范围溢出。

(4)字符型数据可以赋值给整型变量,此时存入的是字符的ASCII码。

(5)将一个int,short或long型数据赋值给一个char型变量,只将低8位原封不动的送到char型变量中。 
(6)将有符号型数据赋值给长度相同的无符号型变量,连同原来的符号位一起传送。

 

C++强制类型转换:

在C++语言中新增了四个关键字static_cast、const_cast、reinterpret_cast和dynamic_cast。这四个关键字都是用于强制类型转换的。

新类型的强制转换可以提供更好的控制强制转换过程,允许控制各种不同种类的强制转换。

C++中风格是static_cast(content)。C++风格的强制转换其他的好处是,它们能更清晰的表明它们要干什么。程序员只要扫一眼这样的代码,就能立即知道一个强制转换的目的。 

 

1) static_cast

在C++语言中static_cast用于数据类型的强制转换,强制将一种数据类型转换为另一种数据类型。例如将整型数据转换为浮点型数据。
[例1]C语言所采用的类型转换方式:

int a = 10;
int b = 3;
double result = (double)a / (double)b;

例1中将整型变量a和b转换为双精度浮点型,然后相除。在C++语言中,我们可以采用static_cast关键字来进行强制类型转换,如下所示。
[例2]static_cast关键字的使用:

int a = 10;
int b = 3;
double result = static_cast(a) / static_cast(b);

在本例中同样是将整型变量a转换为双精度浮点型。采用static_cast进行强制数据类型转换时,将想要转换成的数据类型放到尖括号中,将待转换的变量或表达式放在元括号中,其格式可以概括为如下形式:    

用法:static_cast <类型说明符> (变量或表达式)

它主要有如下几种用法:
    (1)用于类层次结构中基类和派生类之间指针或引用的转换
      进行上行转换(把派生类的指针或引用转换成基类表示)是安全的
      进行下行转换(把基类的指针或引用转换为派生类表示),由于没有动态类型检查,所以是不安全的
    (2)用于基本数据类型之间的转换,如把int转换成char。这种转换的安全也要开发人员来保证
    (3)把空指针转换成目标类型的空指针
    (4)把任何类型的表达式转换为void类型
    注意:static_cast不能转换掉expression的const、volitale或者__unaligned属性。

static_cast:可以实现C++中内置基本数据类型之间的相互转换。

如果涉及到类的话,static_cast只能在有相互联系的类型中进行相互转换,不一定包含虚函数。

 

2) const_cast

在C语言中,const限定符通常被用来限定变量,用于表示该变量的值不能被修改。

而const_cast则正是用于强制去掉这种不能被修改的常数特性,但需要特别注意的是const_cast不是用于去除变量的常量性,而是去除指向常数对象的指针或引用的常量性,其去除常量性的对象必须为指针或引用。

用法:const_cast (expression)
    该运算符用来修改类型的const或volatile属性。除了const 或volatile修饰之外, type_id和expression的类型是一样的。
    常量指针被转化成非常量指针,并且仍然指向原来的对象;
    常量引用被转换成非常量引用,并且仍然指向原来的对象;常量对象被转换成非常量对象。

[例3]一个错误的例子:

const int a = 10;
const int * p = &a;
*p = 20;                  //compile error
int b = const_cast(a);  //compile error

在本例中出现了两个编译错误,第一个编译错误是*p因为具有常量性,其值是不能被修改的;另一处错误是const_cast强制转换对象必须为指针或引用,而例3中为一个变量,这是不允许的!

[例4]const_cast关键字的使用

#include
using namespace std;


int main()
{
    const int a = 10;

    const int * p = &a;

    int *q;

    q = const_cast(p);

    *q = 20;    //fine

    cout <

在本例中,我们将变量a声明为常量变量,同时声明了一个const指针指向该变量(此时如果声明一个普通指针指向该常量变量的话是不允许的,Visual Studio 2010编译器会报错)。

 

之后我们定义了一个普通的指针*q。将p指针通过const_cast去掉其常量性,并赋给q指针。之后我再修改q指针所指地址的值时,这是不会有问题的。

最后将结果打印出来,运行结果如下:
10 20 20
002CFAF4 002CFAF4 002CFAF4

查看运行结果,问题来了,指针p和指针q都是指向a变量的,指向地址相同,而且经过调试发现002CFAF4地址内的值确实由10被修改成了20,这是怎么一回事呢?为什么a的值打印出来还是10呢?

其实这是一件好事,我们要庆幸a变量最终的值没有变成20!变量a一开始就被声明为一个常量变量,不管后面的程序怎么处理,它就是一个常量,就是不会变化的。试想一下如果这个变量a最终变成了20会有什么后果呢?对于这些简短的程序而言,如果最后a变成了20,我们会一眼看出是q指针修改了,但是一旦一个项目工程非常庞大的时候,在程序某个地方出现了一个q这样的指针,它可以修改常量a,这是一件很可怕的事情的,可以说是一个程序的漏洞,毕竟将变量a声明为常量就是不希望修改它,如果后面能修改,这就太恐怖了。

在例4中我们称“*q=20”语句为未定义行为语句,所谓的未定义行为是指在标准的C++规范中并没有明确规定这种语句的具体行为,该语句的具体行为由编译器来自行决定如何处理。对于这种未定义行为的语句我们应该尽量予以避免!

从例4中我们可以看出我们是不想修改变量a的值的,既然如此,定义一个const_cast关键字强制去掉指针的常量性到底有什么用呢?我们接着来看下面的例子。

例5:

#include
using namespace std;

const int * Search(const int * a, int n, int val);

int main()

{

    int a[10] = {0,1,2,3,4,5,6,7,8,9};

    int val = 5;

    int *p;

    p = const_cast(Search(a, 10, val));

    if(p == NULL)

        cout<<"Not found the val in array a"<(new base);

    p->m();

    p->f();

    return 0;

}

本例中定义了两个类:base类和derived类,这两个类构成继承关系。在base类中定义了m函数,derived类中定义了f函数。在前面介绍多态时,我们一直是用基类指针指向派生类或基类对象,而本例则不同了。

本例主函数中定义的是一个派生类指针,当我们将其指向一个基类对象时,这是错误的,会导致编译错误。

但是通过强制类型转换我们可以将派生类指针指向一个基类对象,p = static_cast(new base);语句实现的就是这样一个功能,这样的一种强制类型转换时合乎C++语法规定的,但是是非常不明智的,它会带来一定的危险。

在程序中p是一个派生类对象,我们将其强制指向一个基类对象,首先通过p指针调用m函数,因为基类中包含有m函数,这一句没有问题,之后通过p指针调用f函数。一般来讲,因为p指针是一个派生类类型的指针,而派生类中拥有f函数,因此p->f();这一语句不会有问题,但是本例中p指针指向的确实基类的对象,而基类中并没有声明f函数,虽然p->f();这一语句虽然仍没有语法错误,但是它却产生了一个运行时的错误。换言之,p指针是派生类指针,这表明程序设计人员可以通过p指针调用派生类的成员函数f,但是在实际的程序设计过程中却误将p指针指向了一个基类对象,这就导致了一个运行期错误。

产生这种运行期的错误原因在于static_cast强制类型转换时并不具有保证类型安全的功能,而C++提供的dynamic_cast却能解决这一问题,dynamic_cast可以在程序运行时检测类型转换是否类型安全。

当然dynamic_cast使用起来也是有条件的,它要求所转换的操作数必须包含多态类类型(即至少包含一个虚函数的类)。

例2:

#include
using namespace std;

class base

{

public :

    void m(){cout<<"m"<(new base);

    p->m();

    p->f();

    return 0;
}

在本例中利用dynamic_cast进行强制类型转换,但是因为base类中并不存在虚函数,因此p = dynamic_cast(new base);这一句会编译错误。

为了解决本例中的语法错误,我们可以将base类中的函数m声明为虚函数,virtual void m(){cout<<"m"<

dynamic_cast还要求<>内部所描述的目标类型必须为指针或引用。

例3:

#include
#include
using namespace std;
 
 
class A
{
public:
   virtual void f()
   {
       cout<<"hello"<(a1);//结果为not null,向下转换成功,a1之前指向的就是B类型的对象,所以可以转换成B类型的指针。
 
    if(b==NULL)
    {
        cout<<"null"<(a2);//结果为null,向下转换失败
 
    if(b==NULL)
    {
        cout<<"null"<(a);//结果为null,向下转换失败
 
    if(c==NULL)
 
    {
        cout<<"null"<

 

你可能感兴趣的:(C/C++)